

Copyright © 2017-2021 JANUS Research Group, Inc.

600 Ponder Place Dr

Evans, GA 30809

(706) 364-9100

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher.

Linux
 is the registered trademark of Linus Torvalds in the U.S. and other countries.

Red Hat
 , Red Hat Enterprise Linux
 , Enterprise Linux
 , Ansible
 , CentOS
 , and Fedora
 are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries.

Oracle
 , Oracle Linux,
 and Unbreakable Enterprise Kernel
 are trademarks of Oracle and/or its affiliates

UNIX
 is a registered trademark of The Open Group.

The Filesystem Hierarchy Standard
 is a Copyright of The Filesystem Hierarchy Standard Group, and Daniel Quinlan, Paul Russel, and Christopher Yeoh. http://www.pathname.com/fhs/pub/fhs-2.3.html

The OpenSCAP scap-security-guide
 is an unlicensed, public domain work of the US Government.

AWS
 , Amazon Linux
 , Amazon Machine Image (AMI)
 , and EC2
 are trademarks of Amazon.

XFS
 is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

The systemd flow charts are from https://www.freedesktop.org
 and no assertion of ownership or creation is made.

Any other trade names or trademarks are the property of their respective owners. Neither the authors or JANUS Research Group assert any claim, affiliation, or endorsement with or by any of the above corporations or their intellectual property.

version 2.0 – March 2021

We want to thank all those who helped us make this book possible:

	Janus Research Group who employed us while we wrote

	The Army National Guard Professional Education Center Information Technology Training Center who gave us a reason to write the book in the first place

	Our friends and co-workers who put up with us

	Our wives, who encouraged us to keep writing

	The staff of Reno’s Argenta Café, who fed us

This book is designed to be used either as a self-study guide, or as a basis for classroom instruction. If you use it to teach a class, please let us know. All errors and mis-edits are entirely our own; if you have suggestions or corrections, don’t hesitate to contact us.

John Timaeus &

Russell C. Overton

academy@janusresearch.com

Module 1: Introduction

Logging In

Users and Groups

Paths

Standard Directories

Command Syntax

Typing at bash

Redirection

--help, man, info

Module 2: Files and Directories

ls

file, stat

which

whereis

locate

find

cat, head, tail

touch, echo

mkdir, rm, rmdir

cp, mv

sort, wc, tr, uniq, diff

Module 3: vi

Basics

Cool Tricks, Pretty Colors

Config files

Module 4: Users and Groups

/etc/group, passwd, shadow

useradd

/etc/default/useradd, /etc/login.defs

passwd, usermod, userdel

vipw, vigr

groupadd, groupmod, groupdel, groupmems, id

su, wheel

sudo, sudoers

who, w, lastlog, last, lastb

loginctl

Module 5: Permissions and Ownership

Ownership

Permissions

chmod

Special Purpose Access Modes

umask

Access Control Lists

Module 6: Regular Expressions

grep

Character Sets

Anchors

Modifiers and Alternation

Backreferences

Another Look

sed

awk

awk substitutions

awk programs

Module 7: Booting

Boot Sequence

grub.cfg, grub2-mkconfig, grub2-setpassword

Recovering the root Password

systemd

systemctl

Unit Files

Module 8: Processes and Services

ps, pgrep, kill, pkill, killall

jobs, bg, fg, disown

top, uptime, free, vmstat

nice, renice, ionice, taskset

cgroups: slices, scopes, services

limits.conf, ulimit

Module 9: Filesystems

Inodes

ln

parted, mkfs

mount, umount

systemd.mount

systemd.automount

/etc/fstab

swap

systemd.swap

Logical Volume Manager (LVM)

LUKS

LUKS on a Device

LUKS and LVM

Keys

Module 10: Scheduling Events

systemd.timer

systemd.time

systemd-run .timers

anacron

cron, crontab

at, atq, atrm, batch, atd

Module 11: Networking

nmcli, nmtui, ip

hostnamectl

nsswitch.conf, /etc/hosts

firewall-cmd

network tools

Module 12: Remote Access

ssh

ssh-keygen, ssh-copy-id

scp

sftp

cockpit

vsftpd, lftp

httpd, apachectl

curl, wget, lynx, elinks

NFS

x2go

vnc

Module 13: SELinux

Enforcement

User Classes and Roles

Types and Policy

Security Context Labels

Booleans

audit2allow

Moving and Copying Files

Module 14: Logs

rsyslogd, logrotate

journald, journalctl

auditd

audisp-remote

aureport, ausearch

timedatectl, chronyc, hwclock

Module 15: Installing Software

yum

packagekit

rpm

Linux Installation

Module 16: Kernel Modules and Parameters

lsmod, modinfo, modprobe

Blacklisting

sysctl

Module 17: Backups

tar

rsync

dd

ReaR

Module 18: Security

aide

oscap, scap-workbench

ansible

clam

Securing the network stack

Command Summary

Labs

Module 1: Introduction

The Linux operating system is defined by the use of the Linux kernel, the core process. There are hundreds of variations of Linux – known as distributions or distros – that all share the same basic kernel. The kernel is the core of the operating system. It is tasked with directly manipulating hardware such as processors, memory, and disks.

The kernel is
 the operating system, and will be loaded at boot time into a special, protected area of system memory. Users do not interact directly with the kernel. User programs (binaries) run in separate 'user space memory', and interact with the kernel through system calls.

Linux in one form or another is present in everything from High Performance Computing clusters to cell phones. It is Unix-like but is not UNIX™. If you have used other Unix-like systems you will see many similarities, but be aware that many things, from the initialization process to the filesystem hierarchy, are different.

We will be focusing on operating systems from the Red Hat Enterprise Linux (RHEL) family. The primary distributions in this family are:

	
Fedora
 – the free version of Red Hat. Owned by the Red Hat corporation, but not supported by them. It has a very quick release cycle and is often more cutting edge than the other versions. Each release is maintained for only a year or two. It is generally considered a good distro for desktop usage.

	
CentOS
 – another free version. A direct recompilation of the RHEL source code (which they must release under the terms of the GNU license). Some small options may be changed during the compilation, and the Red Hat branding is removed. Support is provided by the community, rather than subscription.

There are now two versions of CentOS: CentOS Linux and CentOS Stream. Stream is a more forward-leaning version for those who wish to help develop the next version. For purposes of this book, you should use CentOS Linux, not Stream.

	
Red Hat Enterprise Linux
 – the not-free version. Owned and supported by the Red Hat corporation. You do have to pay for the support. The maintenance life cycle is guaranteed to be at least 10 years from release, and the release cycle is slower as the point of RHEL is stability. RHEL and Oracle Linux are currently the only EL distros approved for use on systems requiring Secure Technical Implementation Guide (STIG) compliance.

	
Oracle Linux
 – a recompilation of RHEL with an option to use an alternative kernel, optimized for reliabiltiy and compatability with Oracle software.

	
Amazon Linux
 – offered as an Amazon Machine Image on their EC2 cloud offering and based on the RHEL upstream offering. It is optimized for performance in the Amazon Cloud. The version numbering is different (current version is 2.3), and updates tend to lead the main RHEL release.

From this point on we will simply refer to the operating system as Enterprise Linux (EL). There are currently three major versions of EL under support:

	EL6, released 2010. To be retired November 2020; extended support ends 2024.

	EL7, released 2014 and supported until 2024.

	EL8, released 2019 and supported until 2029.

The labs and exercises for this book are valid for Red Hat Enterprise Linux and CentOS Linux, versions 7 and 8. There will be some slight deviation when using Amazon Linux. In particular, networking and firewall configuration is still performed as it was in EL6. Some software packages, such as cockpi
 t
 will also not be available.

While many of the techniques taught are valid for EL6 and for other families of Linux, there are substantial differences. The introduction of system
 d
 introduced in EL7 changed the way the system is administered dramatically. EL8 was, from an administrator's viewpoint, a much more incremental release. On the few occasions of divergence between EL7 and EL8, it will be noted in the book. For those still on EL6, we recommend our previous book.

There is a possible, but not recommended, direct upgrade path from EL6 to EL7. Reports of problems outnumber the reports of success. Instead, it is better to perform a fresh installation and migrate the data and running loads. There is a direct upgrade path from EL7 to EL8 using the leap
 p
 utility. You can determine your version of EL with the following command:

cat /etc/redhat-releas
 e
 or # cat /etc/os-release

This book was written for administrators of systems owned by or operated on behalf of the US Government, particularly DoD systems. These systems are required to adhere to the DISA STIG, the security standard use for compliance in the DoD.

While we have tried to incorporate as much of the relevant portions of the DISA STIG and general best practices as possible, this book should not be considered authoratitive on regulations, practices, or procedures. The applicable regulations as interpreted by your security officers should be consulted instead.

For those outside the US Government, the STIG is not required. However it makes a good starting point for securing systems. Most of the techniques and standards referenced in this book also apply to the following security standards:

	Australian Cyber Security Center Essential Eight

	US Government Commercial Cloud Services (C2S)

	Criminal Jusitice Information Services (FBI-CJIS)

	ANSSI (France)

	Health Insurance Portability and Accountability (HIPPA)

	PCI-DSS (Payment Card Industry)

	Red Hat Corporate Profile for Certified Cloud Providers

	National Institute of Standards and Technology (NIST) Checklists, including CNSSI 1253, NIST 800-171 & 800-53, USGCB, and DISA’s Security Requirements Guide

	NIAP (NSA & NIST) Protection Profile for General Purpose Operating Systems (OSPP)

The majority of these are either subsets of, or closely related to the STIG. If any of these standards apply to your environment, this book will build the skills needed to implement them. For more information on the standards consult the Security Guides at https://static.open-scap.org/ and at the source documentation referenced there.

The best way to learn is by doing. Have a working installation or two of EL ready to hand when reading this book. Customization scripts and the lab guide are available at https://github.com/janustechacademy/EL7

Before we dive into the details of the operating system we first need an acclimatization to the environment. While there is an optional graphical user interface (GUI) for EL, most servers will not have the GUI installed. Even if it is installed, the chances of it being missing or broken increase in direct proportion to the lateness of the hour, the criticality current task, and the presence of the boss looking over your shoulder. Thus, this book is based on the command line. While it isn't as slick as the GUI, it is dependable.

Logging In

The first thing you must do is log in. To do this you will need an account. All Unix-like systems have a default account called roo
 t
 . The root user is a built-in superuser, with full permission for all commands and files on the system. Under normal circumstances you should never log in as root. Instead you should log in as an unprivileged user then elevate your privilege level as needed. Initially you will need to log in as root. We will create other users and learn to switch between them later. Be aware that most security and sanity checks don't apply to root – issuing the wrong command can have catastrophic effects. Use caution.

Once logged in you will be in a command line shell called bash
 (Bourne Again SHell). You should have a prompt that looks like this:

[root@localhost ~]#

This prompt presents the username, the hostname, and the directory currently occupied by the user (the Present Working Directory, which can be displayed with the command pwd
)
 . The tilde ~
 is a shorthand way of saying 'my home directory'. The prompt ends with a pound sign (or hash) #
 , this is a reminder that you are logged in as root. A normal, unprivileged, non-root prompt ends in a dollar sign like this:

[user@localhost ~]
 $

To end a bash session: #
 exi
 t
 or press CTL-
 d
 at a blank prompt.

Users and Groups

User accounts are assigned to people and services who will interact with the Linux environment. For security, each user should have a unique account and only login using those credentials. By default, these accounts will exist in a system-local database, but they may be stored on a centralized authorization server (LDAP or Active Directory for example). When a user account is created, a few basic pieces of information will be recorded. These are:

	A username
 – also called “login name”, “logname”, or “login”. It is the unique account name which identifies a user to the system during login. It might be as simple as a lowercase alphabetic string (
 jsmit
 h
), or it might incorporate other characters (
 john.smith3
 4
). As with most things on Linux, usernames are case sensitive.

	A User ID
 – abbreviated as UID, the User ID is a number that is used internally by the system for the purposes of identification. The root account, for example, always has a UID of zero 0
 . On most modern Linux systems, User IDs will be automatically assigned at the time of account creation, and will begin at 1000.

	A password
 – a password is a secret character string or phrase known only to an individual user, and are designed to provide a form of proof of identity. Various rules can be implemented to control the complexity, security, and longevity of passwords. Although accounts can be created without passwords (this is the default behavior), users cannot login without a password or similar mechanism. Accounts without passwords are used for other purposes, such as starting services or owning files.

	
A primary group
 – user accounts can be associated together into groups based on factors such as shared function (
 sale
 s
 , accountin
 g
) or by location (
 offic
 e
 , headquarter
 s
), or any other factors an administrator feels are appropriate. As with users, groups also have unique numerical identifiers, the Group ID, or GID.

	Users will always be assigned to at least one group at account creation – a primary group
 which is created for them. In EL the default primary group for a user will be a unique group, with the same name as the username. Membership in other secondary groups is also possible.

	Groups are an additional point to which permissions may be assigned. Without groups, we would have difficulty controlling which individuals should have access to files and resources on the system. Imagine trying to control access to every file, process, and device on a system using only user names. The access controls would quickly become impossible to maintain. Groups provide a way to identify sets of users with similar needs and access requirements. With them we can greatly simplify administration.

	A home directory
 – a directory designed to hold user specific files. Among these, are the configuration files which control certain parts of a user’s environment such as .bash_profil
 e
 and .bashr
 c
 . It is the directory into which a user will be deposited on login. By default users have full control over their home directory and its contents.

	A shell
 – we will cover shell – bash – more thoroughly in a moment. For now, understand that these are the programs that receive input from users and allow them to manipulate the operating system. The simplest way to explain a shell is to say that it is “the thing that you are typing at.”

Paths

Enterprise Linux is, at its heart, a command line driven operating system. This means that, from a user’s perspective, the operating system looks something like this:

ls /var

account cache db ftp gopher lib lock mail opt run tmp adm crash empty games kerberos local log nis preserve spool yp

For new users, this sort of environment can be difficult to comprehend. The output above is showing us a list (
 l
 s
) of the contents of the directory /va
 r
 . Directories are:

	A series of named containers

	Organized hierarchically

	Capable of containing files and other directories

Administrators are free to create any directory structure they like, but there are certain directories which will that will be present by default. We begin with the root directory (also called slash) indicated by a forward slash /
 . The root directory is similar in function to the root of a tree. All other directories grow up and out from the root.

/

 /var

 /var/log

 /var/log/audit

 /var/run

/etc

 /etc/audit

When other filesystems are mounted, they will be mounted to a directory in the root filesystem. To describe the location of any file, we use the path to it, starting from slash /
 .

The path to any file can be described either from slash (the "absolute path") or from the present working directory (the "relative path"). Using the directory layout above, the path to the subdirectory audi
 t
 under /va
 r
 can be described as:

	Absolute path from anywhere: /var/log/audi
 t

	Relative path from /va
 r
 : log/audit

	Relative path from /var/lo
 g
 : audit

Note that the two relative paths in the examples above were not
 preceded by /
 . That is because a slash at the start of a path indicates that the path begins at the root directory. Consider the following command string using c
 d
 to change directories:

cd audit

The effects of this command depend entirely on the user’s Present Working Directory (
 PW
 D
). The above command could:

	Go to
 /etc/audi
 t
 (if PW
 D
 = /et
 c
)

	Go to
 /var/log/audi
 t
 (if PW
 D
 = /var/lo
 g
)

	Fail (if PW
 D
 does not contain a directory called audi
 t
)

Prepending the slash would make the path look like this: /audi
 t
 . This tells the system to start looking in slash /
 for a directory called audi
 t
 . We can see in the earlier structure diagram that such a directory does not exist. This path is an absolute path, in that it begins from root, but the directions are wrong. This is cd with an absolute path:

cd /var/log/audit

This path will always take us to the audi
 t
 directory in /var/lo
 g
 , regardless of PW
 D
 .

There are three special statements for directory manipulation:

	
.

 one dot, this directory.

	
..

 two dots, the directory above this one (the parent).

	
~

 tilde, the user’s home directory

We can better demonstrate this with a quick example. The pw
 d
 command will return a user’s present working directory. Let’s make use of it to explore the concept further:

pwd

/var/log/audit

cd .

pwd

/var/log/audit

Here we have invoked c
 d
 in order to change directories to .
 Since .
 is a surrogate for wherever we are, the c
 d
 command simply succeeds in putting us where we already were.

cd
 ..

#
 pwd

/var/log/

cd
 ..
 /
 ..
 /

pwd

/

Here we used cd
 .
 .
 to move from /var/log/audi
 t
 to the parent directory /var/lo
 g
 . We then used cd
 ..
 /
 ..
 /
 to move from /var/log
 up two
 directories to /
 .

Standard Directories

The Filesystem Hierarchy Standard (FHS) defines a standard set of names, locations, and permissions for many file types and directories in Unix and Linux. This provides a reasonably consistent environment across distributions. One would expect, for example, to find configuration files in /et
 c
 and device files in /de
 v
 regardless of distribution. The FHS lists the following top level directories:

	
/bi
 n
 – Essential command binaries.

	
/boo
 t
 – Static ﬁles of the boot loader

	
/de
 v
 – Device ﬁles

	
/et
 c
 – Host-speciﬁc system conﬁguration

	
/li
 b
 – Essential shared libraries and kernel modules

	
/medi
 a
 – Mount point for removeable media

	
/mn
 t
 – Mount point for mounting a ﬁlesystem temporarily

	
/op
 t
 – Add-on application software packages

	
/sbi
 n
 – Essential system binaries

	
/sr
 v
 – Data for services provided by this system

	
/tm
 p
 – Temporary ﬁles

	
/us
 r
 – Secondary hierarchy

	
/va
 r
 – Variable data

Beginning with EL8 /bi
 n
 , /li
 b
 , /lib64
 ,
 and /sbi
 n
 are mapped via a symbolic link to /usr/bi
 n
 , /usr/li
 b
 , etcetera. This is a first step toward simplifying the hierarchy by eliminating duplication.

There are several special directories. These do not contain files, but they expose kernel level information to the user as if they did. These include:

	
/pro
 c
 – Contains running processes

	
/cgrou
 p
 – Control groups which limit resource usage

	
/de
 v
 – Physical and virtual devices

Command Syntax

The command line environment requires operators to issue syntactically correct instructions. Linux is unforgiving of improperly formatted instructions, generally resulting in a failure to perform. More worrisome is the when a badly formatted command succeeds, doing unintended things. If you find a command is failing, check the command syntax. Often the failure results from simple misplacement of elements.

Command strings in Linux can be broken into three major parts:

	
Command
 – The program we are calling

	

Options
 – Modifiers to the default behavior of the called program. They take several forms:

	Unix style switches: -e
 f
 ,
 -l
 a
 ,
 -
 v

	GNU style options: --line-number
 s
 ,
 --name

	Sub-commands: instal
 l
 , reloa
 d
 , mask

	
Argument
 – The target of the command

These will be separated by whitespace. In other words, when the shell sees a space in a command string, it assumes that we have finished with one statement and moved on to another.

If we call the l
 s
 command without options or arguments, it does this:

ls

bin dev lab lib64 misc opt sbin sys var boot etc lab.tar

Here l
 s
 has returned a listing of files in the user’s present working directory. We can alter the behavior of commands by supplying options. Using -
 l
 (long listing) and -
 a
 (all files):

ls -l -a

total 136

dr-xr-xr-x. 28 root root 4096 Nov 7 14:58 .

dr-xr-xr-x. 28 root root 4096 Nov 7 14:58 ..

-rw-r--r--. 1 root root 0 Nov 7 08:21 .autofsck

dr-xr-xr-x. 2 root root 4096 Nov 7 14:58 bin

dr-xr-xr-x. 5 root root 4096 Sep 7 09:58 boot

drwxr-xr-x. 2 root root 4096 Oct 3 23:52 cgroup

drwx------. 3 root root 4096 Sep 7 08:47 .dbus

Notice that the format of the listing changed, and that new files are listed (specifically, filenames starting with a dot .
 are hidden from casual viewing).

We can also supply an argument, or target, for the command:

ls -la /home

total 36

drwxr-xr-x. 6 root root 4096 Sep 13 10:39 .

dr-xr-xr-x. 28 root root 4096 Nov 7 14:58 ..

drwxrwxr-x. 5 grace grace 4096 Nov 7 14:35 grace

drwx------. 4 harry harry 4096 Sep 13 14:14 harry

drwx------. 2 root root 16384 Sep 7 08:07 lost+found

Above, we instructed l
 s
 to retrieve a listing for the /hom
 e
 directory, even though we were not presently in that directory. We also combined two options into a single set, rather than specifying each individually. This is not always possible, but where it is, it simplifies command strings significantly
 .

Some commands which will take sub-commands, which may be mixed with other style options. For instance the command to control software packages, yu
 m
 :

	
yum provides */nslooku
 p
 – ask which package provides nslookup

	
yum install bind-util
 s
 – install the bind-util
 s
 package

	
yum –y –q upgrade –-securit
 y
 – perform security upgrades, quitely, assume yes is the answer for confirmation questions

Typing at bash

There are lots of tricks you can do at the bas
 h
 prompt. Many are covered later; there are a few you should know about now.

Capitalization matters: Fil
 e
 , fil
 e
 , FIL
 E
 , and fil
 E
 are four separate things as far as Linux is concerned. As a general convention all lower case is preferred.

You can use the up and down arrows to access previous commands. You can edit the command by simply arrowing back to the appropriate place and typing.

You can jump to the beginning or end of a line by hitting CTL-
 a
 or CTL-
 e
 .

You can stop a running command by typing CTL-
 c
 . This will also abort the current input line.

Two exclamation points (bangs) !
 !
 will reissue the last command.

A bang dollar !
 $
 will reissue the last argument of the last command, usually the target. Below we ran a pin
 g
 to test connectivity to a server, terminated the ping with CTL-
 c
 , then used ssh
 to establish a terminal session to the remote server.

ping 192.168.1.155

PING 192.168.1.155 (192.168.1.155) 56(84) bytes of data.

64 bytes from 192.168.1.155: icmp_seq=1 ttl=64 time=0.964 ms

64 bytes from 192.168.1.155: icmp_seq=2 ttl=64 time=0.205 ms

ssh !$

ssh 192.168.1.155

FIPS mode initialized

A reverse search of the history file can be executed using CTL-
 r
 and typing part of a previous command:

(reverse-i-search)`
 pi
 ': ping 192.168.1.155

The command histor
 y
 which will display current shell’s history with numbers prepended. You can reissue any command in the history by simply typing an exclamation point (called a bang !
) followed by the number (no spaces). Note that each bas
 h
 session will carry its own history in memory.

Each user has a history file, ~/.bash_histor
 y
 . By default this is only written to on graceful logout. This means that each shell will have a separate history, and that history will be lost if a session terminates unexpectedly. To make the history file update in real time add the following lines to the user’s .bashr
 c
 :

 ##ensure that the history file appends not overwrites

 shopt -s histappend

 ##append the history each time before getting a prompt

 PROMPT_COMMAND="history -a;$PROMPT_COMMAND"

If you find yourself executing the same command string often, you can create an alia
 s
 for it:

alias connect=’ssh -i /home/bob/.ssh/7-key.pub bob@192.168.123.7’

This allows you to simply type # connec
 t
 rather than the long ss
 h
 string. Currently assigned aliases can be displayed with # alia
 s
 . To make the alias persistent, add the command to .bashr
 c
 in your home directory. This file is read and executed on every login. To remove an alias for the duration of the current session # unalias

Redirection

By default most commands will send all output to the console. Often a command produces more output than will fit on a single screen, or produces output which we want to use as input to another command or which we want to save to a file. For this we use redirection
 .

The pipe – the vertical bar |
 – takes the output of one command and uses it as the input of the next. For instance, listing the contents of the /etc
 /
 directory using

ls -la /etc
 /
 produces more text than a screen hold.

The command les
 s
 allows us to view text one page at a time. Placed on the same line and joined by a pipe, the output of l
 s
 is piped into less: # ls /etc/ | les
 s

Another common use of the pipe is “piping through gre
 p
 ”. gre
 p
 is a command which can find lines containing a regular expression — much more on that later. For now let's just look at the output of the ip
 a
 command, which will show our IP configuration. If we only wanted to see the lines containing ine
 t
 (where the actual addresses are displayed), we could

ip a | grep inet

If we wish to save the output of a command to a file we can redirect it using greater than >
 . This will place the output into a file, creating it if it doesn't exist, and overwriting
 any contents if it does. For instance, if you wanted to save the output of the ip
 a
 command to a file, you would

ip a > fil
 e

You could then view the contents of that file using

less file

 or

cat file
 which will simply display it to the screen
 .

Note that bas
 h
 opens all files and commands on a line at the beginning of command execution, thus # cat file > fil
 e
 opens and empties fil
 e
 before beginning to cat fil
 e
 . The result is fil
 e
 will be empty.

To append
 use two greater thans >
 >
 . To add the output from ip rout
 e
 to a file:

ip route >> fil
 e
 Had you used a single greater here, it would have overwritten the file.

Using a single greater with no command before it:

> file
 erases the contents of the file by overwriting it with the output of nothing. This is often used to empty a file (such as a log), without changing permissions or ownership.

You can string multiple redirections together to produce the desired results. To create a file containing the output of ip
 a
 and ip rout
 e
 , but only the lines containing 19
 2
 addresses in it:

ip a | grep 192 > file ; ip route | grep 192 >> file

In this example the semicolon ;
 separates two commands, which are run as if they were on separate lines.

If a line is too long for the display you can either simply continue typing and let it autowrap, or you can use the backslash \
 followed by RETUR
 N
 , which will extend the command input.

We might also wish to create a file to hold the output of a command or script. In these cases, we would typically use command line redirectors like >
 or >
 >
 . This will redirect all output which would have gone to STDOU
 T
 , which may not be desired. To send output to both STDOU
 T
 and a specified file, use te
 e
 . The te
 e
 command sends output to both STDOU
 T
 and to a file. It can be called from a script (for simple logging) or directly from the command line when we want to both view the output of a command and save a copy of it for later.

ls /usr | column | tee outfile

bin games lib libexec sbin src

etc include lib64 local share tmp

cat outfile

bin games lib libexec sbin src

etc include lib64 local share
 tmp

Unix style systems have a several special virtual files:

	

/dev/nul
 l
 – A black hole, the bit bucket, a place where data goes and doesn't come back.

	
Unwanted output can be redirected here.

	
It can also be used as a source of “nothingness”:

cat /dev/null > file1
 will empty
 file1
 .

	
/dev/rando
 m
 and
 /dev/urando
 m
 – raw sources of randomness.

	

/dev/zer
 o
 – an unending source of zeros.

	
Used to make an empty file.

	
These are binary zeros, they will not display as text.

In bas
 h
 there are three "standard streams". These are the data streams flowing into and out of a command. Each has a designated number known as a file descriptor:

	
STDIN
 –
 0
 The input to a command, either from the terminal, or a pipe

	
STDOU
 T
 –
 1
 The result of a command

	
STDER
 R
 –
 2
 Any error messages from a command

Under most conditions STDOU
 T
 is either displayed on a terminal, or passed to a redirection. STDER
 R
 is by default displayed on the terminal which invoked the command, not passed to a redirection. The standard streams can be redirected using the appropriate numeric descriptor:

	
command 2> errorfil
 e
 – redirects
 STDER
 R
 of
 comman
 d
 to
 errorfile

	
command 2> /dev/nul
 l
 – sends
 STDER
 R
 of
 comman
 d
 to the void

	

command 0< fil
 e
 – use contents of file as
 STDI
 N
 to command

	
command < fil
 e
 is equivalent

	

command &> fil
 e
 – redirects the
 STDER
 R
 of command to
 STDOU
 T
 , which will then be passed into the redirection to
 fil
 e
 .

	
command > file 2>&
 1
 is equivalent

You can also make the execution of a second command dependent on the success of the first:

cmd1 && cmd
 2
 – will run cmd
 2
 only if cmd
 1
 is successful

cmd1 || cmd2
 – will only run cmd
 2
 if cmd
 1
 exits with an error code

All processes (and a command is just a process) exit with a code. By convention a code of 0
 indicates success with no error, and all others indicate an error. The last exit code is stored in a special variable $
 ?
 which is displayed using # echo $?

All processes have a Process ID (PID). Current running processes can be displayed using the ps
 command. The current shell's PID is stored in the special variable $
 $

 .

Many commands will take “glob” characters. These are special characters used for pattern matching. They follow the general pattern of regular expressions covered later. The most basic globbing patterns are the asterisk or splat *
 which matches anything; and the question mark ?
 which matches a single character. So:

ls /etc/*.con
 f
 – lists everything from /etc
 /
 that ends in .con
 f

ls /etc/*d*.con
 f
 – everything that has a d
 followed and ends in .conf

ls /etc/?d*.con
 f
 – everything that has a d
 in the second position and ends in .conf

Command output can also be used as arguments to another command. This is done by piping the output of one command into xarg
 s
 which will turn its input into the arguments for the next command. The wc -
 l
 command counts lines. If we do the following:

ls /etc/?d*.con
 f
 – returns the names of four files

/etc/idmapd.conf /etc/kdump.conf /etc/ld.so.conf /etc/oddjobd.conf

ls /etc/?d*.conf | wc –
 l
 – counts the number of files returned

4

ls /etc/?d*.conf | xargs wc -
 l
 – counts the lines in each file returned

 137 /etc/idmapd.conf

 163 /etc/kdump.conf

 1 /etc/ld.so.conf

 131 /etc/oddjobd.conf

 432 total

Another way to accomplish the same thing is by using command expansion. To do this a command is placed in parenthesis, preceded by a dollar sign:

wc -l $(ls /etc/?d*.conf)

A command can be run in the background by appending an ampersand:

tar -czpf backup.tar /etc/ &

There are times you just want to get a good clean terminal to type at. This can be done with CTL-
 l
 or by issuing the clea
 r
 command. It can also happen that you confuse your terminal by trying to print unprintable characters. This usually is the result of trying to display a binary encoded file, or having a program crash while updating the screen. To get everything straightened out

reset

Some commands will expect input until encountering and end-of-file (EOF) marker. This can be provided with CTL-
 d
 . Handing an CTL-
 d
 directly to a shell will end that shell.

--help, man, info

If you know the name of a command and don't quite remember what goes after it, try tab completion. Sometimes that doesn't get the job done though so put --hel
 p
 after the command. In many cases this will bring up a brief help page, giving you the needed clues.

If you need more detail about a command you can use the built-in manual pages:

man
 command-nam
 e

The page reader for ma
 n
 is les
 s
 . Use q
 to exit the man page reader. To search within a man page, use /
 patter
 n
 (forward search), n
 (next pattern), N
 (previous pattern), and ?
 patter
 n
 (reverse search). To go to the top or bottom use g
 g
 and G
 .

Many programs will also have separate man pages for configuration files or additional documentation in /usr/share/doc
 /
 or on the web. These are usually mentioned at the very bottom of the primary man page.

If you don't know what the name of the command you need is, you can try

#
 man -k
 pattern

The man page system (and the -
 k
 search feature) depends on a small built-in database. Under most circumstances this should be automatically updated as you install/remove software. Occasionally though, you will find that it did not update and a man page that should be available is not. If this occurs, you can update the database by running # mand
 b
 .

In EL7 mand
 b
 runs daily by default. In EL8, it does not. If you wish it to run daily, install

man-db-cro
 n
 .

The man pages are divided into numbered sections based on the type of information provided. For a full listing # man ma
 n
 . The section is specified by using the number as an option to ma
 n
 :

	
man 1 tim
 e
 – a command that times another command

	
man 2 tim
 e
 – a system call used by programmers to get the current time

	
man 3 tim
 e
 – a series of functions for use in the awk programming language

	
man 7 tim
 e
 – a general discussion of how Linux views time

Some commands also will have a more advanced style of manual page which incorporates hyperlinks and colors. These can be accessed using the inf
 o
 command. If an inf
 o
 style page is not available, inf
 o
 will display the standard man page. Of particular use is

#
 info coreutil
 s
 .

For more info, # info inf
 o
 .

Module 2: Files and Directories

ls

To list the files in a directory, use the l
 s
 command. Called without options or arguments, l
 s
 lists the contents of the user’s present working directory. It will only display the names of files and subdirectories, and will not list hidden files (files whose name begins with a dot .
) when called this way. This is the listing of the directory /tes
 t
 .

ls /test

binary directory file link source

There is no information available in this view beyond file names. Let’s add some options:

ls –la

total 56

drwxr-xr-x. 3 root root 90 Jun 2 08:32

dr-xr-xr-x. 24 root root 4096 May 19 14:11 .

-rwxr-xr-x. 1 root root 41504 Jun 2 08:25 binary

drwxr-xr-x. 2 root users 6 Jun 2 08:23 directory

-rw-r--r--. 1 root root 58 May 17 09:31 file

-rw-r--r--. 1 root root 0 Jun 2 08:32 .hidden

lrwxrwxrwx. 1 root root 10 Jun 2 08:31 link -> /test/file

-rw-r--r--. 1 root root 2724 Jun 2 08:27 source

Here we supplied two options to the l
 s
 command: -
 l
 and -
 a
 . The -
 l
 option instructs the command to display a long
 listing of directory contents. The -
 a
 option causes all
 files to be displayed (including hidden files such as .hidde
 n
 in the output). Together, these options provide the results we see above.

As we will be using the l
 s
 command very frequently, let’s take a moment to familiarize ourselves with the output.

drwxr-xr-x.

 2 root root 6 Jun 2 08:23 directory

The underlined part is the permissions string. The first character indicates the type of file we’re dealing with. Here it is d
 , for directory. We might also see an l
 (link), a dash -
 (regular file), or other characters intended to provide hints about the nature of a given listing.

The rest of the string shows permissions triplets for a file’s owner (user), the owning group (group), and anyone else (others). In this string, r
 indicates Read, w
 is Write, and x
 is eXecute. We could read the permissions string above as:

	User: Read, Write, Execute

	Group: Read and Execute (but not Write)

	Others: Read and Execute (but not Write)

The dot .
 on the end of the permission string indicates that there is currently no Access Control List (ACL) associated with this file. If an ACL had been associated with this file, we would see a plus sign +
 rather than a dot. We’ll discuss permissions (including ACLs) in detail later.

drwxr-xr-x.

 2
 root users
 6 Jun 2 08:23 directory

The next field (
 2
) is the number of links
 to a file. Links are entries in a directory that point to a file. These come in two flavors: hard
 and symbolic
 . Hard links point directly to a file's underlying inode (a filesystem data structure which contains information about the file and its pointers to the data blocks containing the content of the file), while symbolic links are like hyperlinks, and simply contain a path to another file. The number increments as the number of hard links to a file increases and decrements as links are removed.

After that, two fields indicate the owning user and group. In this case, the owner is the roo
 t
 user, and the owning group is the user
 s
 group.

The last three fields represent the size of the file (
 6
 bytes), the date and time the file was last modified, and the name of the entry: director
 y
 .

file, stat

Going back to the output above:

ls –la

total 56

drwxr-xr-x. 3 root root 90 Jun 2 08:32

dr-xr-xr-x. 24 root root 4096 May 19 14:11 .

-rwxr-xr-x. 1 root root 41504 Jun 2 08:25 binary

drwxr-xr-x. 2 root users 6 Jun 2 08:23 directory

-rw-r--r--. 1 root root 58 May 17 09:31 file

-rw-r--r--. 1 root root 0 Jun 2 08:32 .hidden

lrwxrwxrwx. 1 root root 10 Jun 2 08:31 link -> /test/file

-rw-r--r--. 1 root root 2724 Jun 2 08:27 source

Above each object is named to reflect its nature (
 file
 is a file, director
 y
 is a directory). In reality filenames do not control content type. Below we have another directory listing:

ls /usr/lib/udev

accelerometer mtd_probe tascam_fw

ata_id mtp-probe udev-add-printer

cdrom_id rename_device udev-configure-printer

Those names are not especially revealing. To find out more about them, we use fil
 e
 . The fil
 e
 command attempts to determine the nature of a file. It runs three sets of tests against the file: filesystem tests, magic tests, and language tests.

Filesystem tests examine the results of sta
 t
 . The sta
 t
 command reports detailed information about files or filesystems. When called without options against a file, it returns useful information such as a file's type, size, reference inode, timestamps, access rights, and more.

Executing ls
 in the /tes
 t
 directory shows a file called lin
 k
 .

ls

binary directory file link source

Running fil
 e
 against lin
 k
 gives us some interesting results:

file link

link:
 symbolic link
 to '/test/file'

stat link

 File:
 ‘link’ -> ‘/test/file’

 Size: 10 Blocks: 0 IO Block: 4096
 symbolic link

Device: fd00h/64768d Inode: 34218811 Links: 1

Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)

<truncated>

When we called sta
 t
 against lin
 k
 it returned the metadata associated with that file, including the denotation of symbolic lin
 k
 . The filesystem itself could understand what type of file lin
 k
 was, and the fil
 e
 command found an answer in the first set of tests. If this set of tests fails to get a satisfactory result, the fil
 e
 command will attempt identification through magic database files. Trying the same thing with binar
 y
 :

file binary

binary:
 ELF 64-bit LSB executable
 , x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.32, BuildID[sha1]=bb794ad0b7a9b70f6bb8d757d4423c2a374dabcf, stripped

stat binary

File: ‘binary’

Size: 41504 Blocks: 88 IO Block: 4096
 regular file

Device: fd00h/64768d Inode: 27204150 Links: 1

<truncated>

Above, fil
 e
 successfully identified binar
 y
 as an ELF 64-bit LSB executable binar
 y
 . That is to say a program that can be run. However, sta
 t
 indicates a regular fil
 e
 – the filesystem tests did not identify this file. In this case, the magic files were consulted, specific byte patterns were matched in the file’s data blocks, and an identification was made.

If both tests had failed, fil
 e
 would have attempted to determine if the target file was a text file containing character sequences from a known language.

which

There are many ways to locate files in Linux. The whic
 h
 command will attempt to locate the first instance of a named command in a user’s PAT
 H
 . The PAT
 H
 environment variable contains a series of directories, separated by colons :
 , through which the shell will search to find a command. To display the contents of PAT
 H
 :

echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin

which cat

/usr/bin/cat

Here, whic
 h
 searched sequentially for ca
 t
 in /usr/local/sbi
 n
 , /usr/local/bi
 n
 , and /usr/sbi
 n
 before locating ca
 t
 in /usr/bi
 n
 . If another copy of ca
 t
 existed in /root/bi
 n
 , the final directory, or anywhere else on the system; whic
 h
 would not have found it.

The whic
 h
 command tells us which instance of a command will be executed when called without specifying a path. If that doesn’t seem important, consider this:

echo $PATH

.
 :/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin

The dot at the front of the PAT
 H
 represents the present working directory. If it is present in a user’s PAT
 H
 , it can result in unintended execution. For example, if a malicious program called l
 s
 existed in a user’s present working directory, and the user then attempted to list the contents of that directory, they would inadvertently trigger the script instead.

whereis

The wherei
 s
 command is designed to locate binary, source, and man pages for a command. wherei
 s
 is limited when compared to other search utilities, but it does provide quick answers. It does this by searching:

	a predefined, hard-coded list of directories

	directories in a user’s PATH

	directories defined by the MANPAT
 H
 variable

	To see the directories to be searched and the file types expected in them:

#
 whereis -
 l

Below, wherei
 s
 found the c
 p
 binary in /usr/bi
 n
 and two man pages in /usr/share/ma
 n
 :

whereis cp

cp: /usr/bin/cp

/usr/share/man/man1/cp.1.gz

/usr/share/man/man1p/cp.1p.gz

locate

The locat
 e
 command is a simple tool for finding files by name on your system. It uses an index database /var/lib/mlocate.d
 b
 . This is updated by updated
 b
 , which usually run daily by anacron.
 In EL8, this is not the default. We will rectify that in the module on scheduling events. If you wish to run the indexing manually as root run # updated
 b

Using locat
 e
 is straightforward:

locate locate.me

/lab/02-files/directory/locate.me

Here locat
 e
 returned the absolute path of the located file. There are some drawbacks to locat
 e
 . The biggest is locat
 e
 will always treat the supplied argument as a string pattern. It will match this string in whole or in part, regardless of where in the path the pattern occurs. For example:

locate cp | head

/boot/extlinux/cpuid.c32

/boot/extlinux/cpuidtest.c32

/boot/extlinux/ifcpu.c32

/boot/extlinux/ifcpu64.c32

/boot/grub2/i386-pc/acpi.mod

/boot/grub2/i386-pc/cpio.mod

/boot/grub2/i386-pc/cpio_be.mod

/boot/grub2/i386-pc/cpuid.mod

/boot/grub2/i386-pc/lsacpi.mod

/etc/dhcp

<truncated>

Note that locat
 e
 matched the string c
 p
 regardless of its location in the path. This behavior cannot be modified. To find the c
 p
 command using locat
 e
 , you would need to resort to silliness like this:

locate cp | grep /cp\$

/usr/bin/cp

The locat
 e
 command has its place, but for serious work find
 is a better option.

find

fin
 d
 is one of the most powerful search utilities available in Linux. It can find files based on attributes such as filename, timestamp, ownership, permissions, and more. When working with find, we will typically:

	
Define a search space (a place to start looking)

	Specify search criteria (filename, type, timestamps, permissions, etc)

	Optionally specify a command to run against the results

Defining a search space

If we call fin
 d
 without any options or arguments, will behave similarly to ls -R
 a
 . It will list the contents of the present working directory (including hidden files), and recursively list the contents of subdirectories as well.

find

.

./file

./directory

./directory/subfile

./binary

./source

./link

./.hidden

./pathfile

Had we been at /
 , it would have listed every file and directory on the entire system.

A directory, or series of directories, may be provided to fin
 d
 as a search space. The depth of search in those areas can be refined with the maxdept
 h
 and mindept
 h
 options. Consider the following output:

find /1 -type f

./
 1
 /fileInDir1

./1/2/fileInDir2

./1/2/3/fileInDir3

./1/2/3/4/fileInDir4

./1/2/3/4/
 5
 /fileInDir5

Here we have a stack of directories (
 1
 through 5
), with a single file in each. We told fin
 d
 to look for regular files (
 -type
 f
) in the directory /
 1
 and all subdirectories beneath it.

To use mindept
 h
 and maxdept
 h
 to narrow the scope from 2
 to 4
 :

find /1 -mindepth 2 -maxdepth 4 -type f

./1/
 2
 /fileInDir2

./1/2/3/fileInDir3

./1/2/3/
 4
 /fileInDir4

Searching by name

Suppose we need to find a configuration file, but we’re not sure of the name. We know it ends with con
 f
 and it starts with a c
 , but we’re not sure of the capitalization.

find /etc -iname "c*" -name "*.conf"

/etc/pki/ca-trust/ca-legacy.conf

/etc/abrt/plugins/CCpp.conf

/etc/security/chroot.conf

/etc/openldap/check_password.conf

Let’s break it down.

	
fin
 d
 – start finding

	
/et
 c
 – start here and recurse subdirectories

	
-inam
 e
 – search by name, ignore case

	
c
 *
 – filename starts with
 c
 . asterisk translates to “anything or nothing”

	
-nam
 e
 – search by name, respect case

	
*.con
 f
 – filename can be anything or nothing as long as it ends with “.conf”

The default behavior of fin
 d
 when multiple nam
 e
 or inam
 e
 options are supplied is to insert a logical AN
 D
 between them. If you would prefer fin
 d
 to operate using a logical O
 R
 , simply pass it the -
 o
 option.

Note that fin
 d
 uses bash globbing
 , the built-in wildcard expansion, not RegEx when searching by name. Full details can be found in # man 7 glo
 b
 , the most relevant differences are these:

	
Glob

	
Glob Meaning

	
RegEx Meaning

	
*

	
Zero or more characters

	
Zero or more of character it follows

	
?

	
Any single character

	
Zero or one of character it follows

	
.

	
A literal dot .

	
Any single character

Searching by attribute

Frequently, we may need to find files with unsafe or undesirable ownership, permissions, or attributes. We may wish to find all executable files which are world writeable, a common security concern. Or, we might want to list any files with Special Purpose Access Modes (SUID, SGID, or Sticky bits) set. Maybe we’d like to find files that are owned by a particular individual (or owned by no one at all), or files accessed or modified within a certain time window. fin
 d
 can resolve all of these issues. Consider:

find . -type f -perm /o=w -perm /o=x -exec ls -l {} \;

-rwxrwxrwx. 1 root root 2724 Jun 2 08:27 /
 source

Breaking the command down:

	
fin
 d
 – start finding

	

 .
 – start looking in PWD and proceed recursively through all subdirectories

	
-type
 f
 – search only for regular files

	
-per
 m
 – match files with the following permissions

	
/o=
 w
 – match any of the bits listed – listed are “o=w”, or “write” for “others”

	
-per
 m
 – match files with following permissions (logical AND with previous -perm)

	
/o=
 x
 – match any of the bits listed – listed are “o=x”, or “execute” for “others”

	
-exec ls -l {} \
 ;
 – run
 ls -l
 against the
 STDOUT

In English, that is "Find any regular files, in my current directory or beneath, which are writeable and
 executable by the world. Then, run ls -
 l
 on them."

Let’s explore a few examples of finding files that present security concerns:

find / -nouser

This will return a list of all unowned files on the system. When files are unowned, this is usually the result of user account deletion. Calling ls -
 l
 on an unowned file might results in this:

-rwxrwxrwx. 1 root root 2724 Jun 2 08:27 source

-rw-r--r--. 1
 1002 1002
 231 Aug 2 2016
 unowned

For the file sourc
 e
 , we can see an owner of roo
 t
 , and an owning group of root.
 However, the file unowne
 d
 shows only numbers. These numbers represent a User ID and a Group ID. We are seeing them now because there is no user or group matching these IDs in the /etc/passw
 d
 and /etc/grou
 p
 files. Thus, the file is unowned.

We might also be interested in finding files with undesirable attributes such as SetUID or SetGID. These attributes allow files to be executed with the permissions of the owning user or group rather than the invoking user. This is especially problematic when such files are owned by root or other privileged accounts. To locate these types of files:

find / -type f -perm /u=s -exec ls -l {} \;

-rwsr-xr-x. 1 root root 32008 Nov 5 2016 /usr/bin/fusermount

-rwsr-xr-x. 1 root root 61328 Nov 5 2016 /usr/bin/ksu

-rws--x--x. 1 root root 23960 Nov 5 2016 /usr/bin/chfn

-rws--x--x. 1 root root 23872 Nov 5 2016 /usr/bin/chsh

-rwsr-xr-x. 1 root root 27832 Jun 10 2014 /usr/bin/passwd

The switch –perm /u=
 s
 instructs fin
 d
 to locate files with the SUID bit set. The -
 exe
 c
 option returns a long listing of the located files, allowing us to learn more about the files in question.

While -exe
 c
 allows the execution of any command on the results of a fin
 d
 , the full invocation can be awkward. There are several other ways to achieve much the same result:

find
 /path
 criteria
 –exec ls –la {}\;

find
 /path
 criteria
 | xargs ls –la

ls –la $(find
 /path
 criteria
)

find
 /path
 criteria
 >
 scratch-file
 ; ls –la <
 scratch-file

All of the above are equivalent. You can also directly list or delete files from within fin
 d
 :

find
 /path
 criteria
 –ls

find
 /path
 criteria
 -delete

Finally, we may wish to find files that have been accessed or modified within a certain time range. The fin
 d
 command offers options for locating files based on these characteristics:

	
atim
 e
 – Access Time (the last time a file was opened for reading – may not be recorded)

	
ctim
 e
 – Change Time (when the status – permissions, ownership – of a file was changed)

	
mtim
 e
 – Modify Time (when the content of a file was altered)

These options are easily misunderstood, and as such, are often misapplied. All three options use 24 hour blocks to define time ranges, and the timeline points backwards in time. Specifying the number 1, for example, causes find to return files with a timestamp between
 24 and 48 hours old. To locate files created within the last 24 hours, we would instead have used:

find / -atime -1

For files more than TWO days (48 hours) old:

find / -atime +1

There is another option to find files by time using the –newer option. This can be used to search for files newer than a reference file

touch -t 202003170000 reference-file

find /etc –type f -newer reference-file

Above we created a file with a modify time of 17 March 2020, then searched /et
 c
 for newer files. This can be modified using the –newer
 X
 t
 format, where X
 can be a
 , c
 , or m
 for access, change, modify and the optional t
 tells fin
 d
 that a time rather than a reference file argument follows. The search can be inverted using -no
 t
 . These can also be combined to create a range:

find /etc –newermt 2020-03-17

find /etc –newermt 2020-03-01 –not –newermt 2020-03-17

cat, head, tail

The simplest command for viewing text, ca
 t
 , is most often invoked like this:

cat file

these are the contents of file

file contains multiple lines

^ that was a blank line

this is the end of file

Above, ca
 t
 was invoked without options, and given a filename as an argument. ca
 t
 dumped the contents of the file to STDOU
 T
 .

ca
 t
 can place line numbers into the output (
 -
 n
 , or -
 b
 to number non-blank lines only). This is handy for debugging scripts.

If you need to create a quick text file, but don’t want to fuss with an editor, use ca
 t
 :

cat >> outfile

we are just typing in the empty space

this is a new line.

when we press
 CTL-d
 cat will close and append this to
 outfile

When dealing with log files, it is often helpful to view only the first or last few lines of a file. Logs are sequential, so the latest entries will be at bottom, and the earliest will be at the top. The hea
 d
 and tai
 l
 commands will return the first or last ten lines of a file, respectively. The number of lines returned can be altered if desired.

To view the last three lines of the log for cron:

tail -3 /var/log/cron

Dec 2 09:01:01 8 CROND[10091]: (root) CMD (run-parts /etc/cron.hourly)

Dec 2 09:01:01 8 run-parts[10091]: (/etc/cron.hourly) starting 0anacron

Dec 2 09:01:01 8 run-parts[10091]: (/etc/cron.hourly) finished 0anacron

If we supply -
 f
 (follow), tai
 l
 will display the last few lines of a file and continually refresh that output as the file changes.

Conversely, head
 returns the first few lines of a file:

dmesg | head -5

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

[0.000000] Initializing cgroup subsys cpuacct

[0.000000] Linux version 3.10.0-514.el7.x86_64 (
 builder@kbuilder.dev.centos.org
) (gcc version 4.8.5 20150623 (Red Hat

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-3.10.0-514.el7.x86_64 root=/dev/mapper/cl-root ro crashkernel=auto rd.lvm.lv=cl/root rd.lvm.lv=cl/swap rhgb quiet LANG=en_US.UTF-8

Here we used dmes
 g
 , which displays boot logs as the input for hea
 d
 . The underlined portion is a wrapped line. It shows the options supplied to the kernel at boot time.

touch, echo

Much administration of Linux involves manipulating text files. Occasionally, we will need to create a new file from the command line. For most work, we will turn to a fully featured editor such as v
 i
 , which is addressed later. In other situations, we may only require that a file exist. The file /.autorelabe
 l
 , for example, will cause all files and directories on a system to be relabeled to their default security context if it exists at boot time. The file itself is empty, and does not exist by default.

The simplest way to create such a file would be to use the touc
 h
 command. The intended use of touc
 h
 is updating the access and modify timestamps on a given file. However, if a non-existent filename is supplied as an argument to touc
 h
 as an argument, it will be created.

touch /.autorelabel

To create small configuration files, or add lines to simple configuration files, we can use ech
 o
 with redirection. The primary function of ech
 o
 is to read input (typically from STDI
 N
) and send that output to STDOU
 T
 . Combining this with redirection allows the insertion of text into a file. This is useful for appending lines to configuration files, or creating small text files.

echo "this is line 1" > file

cat file

this is line 1

echo "this is line 2" >> file

cat file

this is line 1

this is line 2

mkdir, rm, rmdir

Directories are created with the mkdi
 r
 command. The use of this command is straightforward; invoke mkdi
 r
 and provide the path and name of the directory you wish to create:

mkdir -m 0700 -p this/is/insecure

find this -exec ls -ld {} \;

drwxr-xr-x. 3 root root 16 Jun 16 15:26 this

drwxr-xr-x. 3 root root 22 Jun 16 15:26 this/is

drwx------. 2 root root 6 Jun 16 15:26 this/is/insecure

Above, we added two options to the mkdir
 command: -
 m
 and –
 p
 . The –
 m
 option sets the mode (permissions) for the directory and –
 p
 allows us to create a directory and its subdirectories in a single command. Note that, when the options are combined in this way, the mode option only sets the permissions of the ultimate subdirectory, rather than each directory in the set.

The r
 m
 command removes (deletes) files and directories. This is an inherently dangerous act as bas
 h
 has no undo function. Thankfully, r
 m
 has options to limit its scope and effect:

	
-
 r
 – recursive, remove a directory (and everything inside it)

	
-
 i
 – interactive, prompt user for confirmation before deleting

	
-
 f
 – force, do not prompt

In EL, the .bashr
 c
 file for the root user has a default alias of rm
 to rm -
 i
 . This causes r
 m
 to prompt the user for confirmation before deleting any file. From a safety and security standpoint this is a desirable behavior, but it presents a problem when roo
 t
 needs to remove a large number of files. In these cases, we may use rm -
 f
 or invoke the system version of r
 m
 directly, bypassing the alias:

rm outfile

rm: remove regular file ‘cap’? #confirmation prompt

/usr/bin/rm outfile

#no confirmation

To remove directories use rm –
 f
 , or rmdi
 r
 which will only delete empty directories.

cp, mv

To copy and move files, use c
 p
 and m
 v
 . There are some factors to consider regarding their usage:

	

Copying
 a file requires read permissions on the original file, and read/execute on the directory containing it.

	When the new file is created, it will be owned by the copying user and access permissions will not necessarily be preserved from the original.

	The SELinux security context for the new file will be inherited from the directory it is created in.

	

Moving
 a file does not require any permissions on the file itself; but does require read, write, and execute privileges on the directory containing the file. This is because moving a file, or deleting one, is a directory operation. Rather than saying a file was deleted or moved, we should say that the directory listings for this file’s inode were altered.

	Moved files retain the original security context, ownership, and permissions.

	
bas
 h
 does not have a separate rename command, to rename a file or directory, use m
 v
 .

sort, wc, tr, uniq, diff

The sor
 t
 command arranges data alphabetically, numerically, or by other characteristics (such as days of the month).

cat list

red

blue

green

cat list | sort

blue

green

red

We can use the w
 c
 command to get counts of w
 ords, c
 haracters, or l
 ines in a file or input stream:

cat counts

This file contains five lines.

The number of words is 29.

I don't know the number of characters.

But I can use wc to find out.

Let's try it.

wc counts

 5 29 141 counts

wc -c counts

141 counts

wc -l counts

5 counts

wc -w counts

29 counts

The t
 r
 command allows us to translate specified characters into other characters (or remove them altogether). Here are some simple examples using command line redirection.

Translating lower to uppercase:

ps

 PID TTY TIME CMD

3271 pts/0 00:00:00 bash

3418 pts/0 00:00:00 ps

ps | tr [:lower:] [:upper:]

 PID TTY TIME CMD

3271 PTS/0 00:00:00 BASH

3419 PTS/0 00:00:00 PS

3420 PTS/0 00:00:00 T
 R

Squeezing out the repeating spaces to make things more compact:

ps | tr -s [:space:]

PID TTY TIME CMD

3271 pts/0 00:00:00 bash

3428 pts/0 00:00:00 ps

3429 pts/0 00:00:00 tr

Deleting numbers from the output:

ps | tr -d [:digit:]

 PID TTY TIME CMD

 pts/ :: bash

 pts/ :: ps

 pts/ :: tr

Deleting everything that is not a number:

ps | tr -cd [:digit:]

327100000003437000000034380000000

Remember that t
 r
 is translating characters rather than words:

ps | tr 'bash' 'shell'

 PID TTY TIME CMD

3271 pte/0 00:00:00 shel

3463 pte/0 00:00:00 pe

3464 pte/0 00:00:00 tr

Note that t
 r
 didn’t replace “bash” with “shell”. Instead, it replaced b
 with s
 , a
 with h
 and so on. This is why pt
 s
 became pt
 e
 .

The uni
 q
 command can be used to find lines that repeat (or lines that don’t), but it can only find lines that repeat immediately. If a duplicate line exists in multiple locations in a file, and the duplicate lines are is separated by some other unique text, uni
 q
 will not register this as a duplicate. Consider the following example:

cat song

This is the song that never ends

it never ends

it never ends

It just keeps going

it never ends

it never ends

uniq song

This is the song that never ends

it never ends

It just keeps going

it never ends

The dif
 f
 command is used to compare two files. This is typically used as a form of version control for configuration files or for forensic purposes. Consider the following example:

diff file1 file1.bk

1,4c1,4

< This is the original file

< and nothing has been changed

< but we'll make some changes

< and compare it with diff

> This is the copied file

> and something has been changed

> we made some changes

> and compared it with diff

5a6

> we added this line

We can read the output this way:

	
1,4c1,
 4
 – lines 1-4 of the first file need to be changed to match lines 1-4 of the second file

	
5a
 6
 – and we need to add line 6 of the second file after line 5 in the first file.

We can see that only four lines were returned from the first file. Why did dif
 f
 insist that a changed needed to be made after line 5? Let’s compare the files side by side with line numbers:

diff -y file1 file1.bk | tr -s [:space:] | cat -n

1 This is the original file | This is the
 copied
 file

2 and nothing has been changed | and
 something
 has been changed

3 but we'll make some changes |
 we made
 some changes

4 and compare it with diff | and compare
 d
 it with diff

5 but this line won't change but this line won't change

6
 we added this line

Note lines 5 and 6 above. Both files contain an unaltered line 5, which dif
 f
 did not display. Line 6 existed only in the second file.

Module 3: vi

There are several text editors available in Enterprise Linux. There is gedi
 t
 – a graphical, notepad-like editor, nan
 o
 – a text based editor developed originally as part of an email client, and then there's v
 i
 . Unlike gedi
 t
 or nan
 o
 , v
 i
 is not intuitive. It has a steep learning curve; even the people who love it admit that it takes weeks or months to get comfortable with v
 i
 .

To begin with, it uses modes: Inser
 t
 mode allows you to type; Visua
 l
 mode allows you to select; and so-called Norma
 l
 mode allows you to run commands, open and close files, etc. Every beginner finds themselves flopping around in the wrong mode, trying to type in Norma
 l
 mode and watching weird things happen instead.

If it's not intuitive, takes a long time to learn, and has easier alternatives, why bother?

	
If you spend some time getting good with v
 i
 , you will find it is the right tool for many jobs.

	With the extensions provided in vi
 m
 (vi
 im
 proved), it is a pretty fully featured programming environment, with lots of handy shortcuts and support for most major languages. It is the preferred development environment for many programmers, some people even pay for versions of v
 i
 to run in Windows.

	Some tasks, such as editing the password file, should only
 be done using v
 i
 .

	

v
 i
 has a small memory footprint and can open very large files.

	The default maximum is 2 GB

	This can be customized with
 :set m
 m
 , :set mm
 t
 , and :se
 t
 swap

	
In a Unix-like environment, it is the only editor you are sure to have.

	Graphical editors, like gedi
 t
 , don't run without graphics, and real servers don't run graphical interfaces.

	Other editors, like nan
 o
 , may not be installed.

	vi
 is available and installed by default on pretty much every device where you can run
 ls
 on to get a directory listing. As long as the computer in front of you isn't running Windows, it probably has
 vi
 .

In EL7/8 there are two versions of v
 i
 installed: vim-minima
 l
 and vim-enhance
 d
 , which has all the pretty colors and extra features. Users with a UID less than 200 will get vim-minima
 l
 by typing v
 i
 , those above (all regular users) will get vim-enhance
 d
 . This is set by aliases in /etc/profile.d/vim.
 *
 The files in this directory are read and processed during the logon sequence. All users will get the enhanced version by invoking vi
 m
 .

This module is broken into three parts: the first is the absolute least you need to know to be an effective administrator; the second is a list of some of the cool things that may make your life easier if you learn to use them, the third addresses safe editing of configuration files.

Basics

At a minimum you need to be able to open a file, edit it, and get out without breaking things. To open a file

vi
 newfil
 e
 .

You will start in Norma
 l
 mode. You can use the arrow keys to move in any mode. To begin typing you will need to be in Inser
 t
 mode; to get there you can use

	
i
 – insert here

	
o
 – add a line below and insert there

	
A
 – insert at end of current line

	
To get back to
 Normal
 mode press
 ES
 C
 .

To get around in Norma
 l
 mode

	
u
 – undo

	
CTL-r
 – redo

	
y
 y
 – 'yank' (copy) the current line

	
d
 d
 – cut current line

	
p
 – paste

	
^
 /
 $
 – beginning/end of line

	
H
 /
 M
 /
 L
 – high/mid/low on page

	
g
 g
 /
 G
 – top/bottom of file

	
*
 /
 #
 – match next/previous word under cursor

	
Repeating commands:

	
.
 – (dot) repeat the last thing you did

	or a number before the command: 10d
 d
 cuts 10 lines, 2
 p
 pastes twice.

To select, you need to be in Visua
 l
 mode. From Norma
 l
 press

	
v
 – select characters

	
V
 – select lines

	
CTL-
 v
 – select blocks

	
y
 – copy

	
d
 – delete

	
p
 – paste

To exit v
 i
 , go to Norma
 l
 mode then issue a v
 i
 command. Commands begin with a colon
 :

	
:
 q
 – quit without saving, if you made changes it will want
 :q
 !

	
:e!
 – start editing the file over without saving

	

:w
 !
 – write changes to file

	
:w!
 /path/otherfil
 e
 – writes to
 otherfile

	

:w >>
 otherfil
 e
 – appends buffer to
 otherfile

	
:wq
 !
 – write and quit, the most common way to leave

Cool Tricks, Pretty Colors

Most of these things apply both to v
 i
 (vim-minimal) and vim
 (vi-enhanced). Some, such as the syntax-aware highlighting (the pretty colors) only apply to vi
 m
 .

Multiple files

To open a file explorer from Norma
 l
 mode :Ex

You can open several files sequentially:

vi
 fileone filetwo filethree

Each file will open in a separate buffer.

	
To move between buffers

	
:
 n
 – next

	
:
 N
 – previous

	
If you haven't written your edits

	
:w
 n
 – write, next

	
:n
 !
 – next, discard changes

	To list buffers
 :l
 s

	To leave all files at once :wqa!

You can also open a second file in the current buffer

vi
 filethre
 e
 , then :e
 filefour

To switch between them, use CTL-
 ^
 .

We recommend using either of these methods, but not both, as it can get confusing. If you do get confused while doing these kinds of things CTL-
 g
 will give you a hint as to where you are.

If you want to open multiple files on a single screen, open one normally then

:split
 otherfil
 e

To move between windows CTL-
 w
 followed by an arrow key.

With no arguments, :spli
 t
 will open the current file in two windows – very useful if you want to view the original while making changes.

To view files side by side instead of over and under :vspli
 t
 (
 vi
 m
 only).

To highlight differences between two files :diffsplit

You can also open multiple files in tabs using :tabedi
 t
 .

To move between tabs CTL-PgU
 p
 / CTL-PgDow
 n
 or :tab
 n
 / :tab
 p

vi
 will open remote files using scp, http, or ftp:

vim
 scp://user@other.server.com//var/log/messages

Notice the two slashes before va
 r
 . The first ends the url, the second is the beginning of the path.

Inserting stuff

There are lots of ways to get external content into a file. The most basic is to open multiple files, select what you want, switch files and paste. To put the entire contents of file2
 into file
 1
 :

vi
 file1 file2

 :
 n
 – switch to next file

 g
 g
 – goto the top

 V
 – enter Visual mode

 G
 – goto the bottom

 y
 – yank

 :
 N
 – switch to previous file

 p
 – paste

That's a lot of keystrokes for a pretty small result. Instead we can:

vi
 file1

:r
 file2

This reads the contents of file
 2
 into file
 1
 at the cursor.

To insert the result of a command into a file

:r !dat
 e
 or

:r !ls -la | grep
 patter
 n
 .

Avoiding repetition

If you find yourself typing the same thing over and over again you can create an abbreviation for it. For instance, here is a typical address record from a DNS zone file:

server1 IN A 10.0.1.
 5

These files can go on for hundreds of lines and mistakes can cause service outages. To avoid some of the drudgery and chance of error:

:
 abbr
 ad
 IN A 10.0.1.

Now you can simply type server1 a
 d
 followed by a space and a
 d
 will expand to

 IN A 10.0.1

You can add permanent abbreviations to a vimrc/vir
 c
 file.

To find the path to the appropriate file :version

There are some global commands which you can use. They take the general form of

:g
 /
 pattern
 /
 command
 /
 actio
 n

These go well beyond the scope of this course but some handy ones include:

	
:g/appl
 e
 – show lines containing
 apple

	
:g/apple\|orange/
 d
 – delete lines with
 appl
 e
 or
 orange

	
:v/apple\|orange/
 d
 – delete lines
 without
 appl
 e
 or
 orange

	
:%s/apple/orange/g
 – search for
 appl
 e
 , replace wit
 h
 orange,
 g
 lobally

	
:g/^\s*$/
 d
 – delete lines that are whitespace
 \s
 *
 from beginning
 ^
 to end
 $
 .

That is to say, blank lines.

If you want to repeat a v
 i
 command, use the up arrow after a colon.

If you find yourself doing the exact same set of keystrokes repeatedly you can record a macro to a register from Normal:

	

q
 M
 – begin recording to register
 M

	perform your action

	
es
 c
 ,
 q
 – end recording

	
@
 M
 – perform action saved in register
 M

	
@
 @
 – repeat action

Running commands

You can run commands external to v
 i
 from Norma
 l
 mode:

:!ip
 a
 or :!bash

If you want to run an external command on the entire contents of your file

:% !sor
 t
 – the percent sign represents the contents of the file

To run commands by on part of a file by line number it is best to first see the line numbers

:set numbe
 r
 – turn line numbers on

:set number
 !
 – turns them off

Now you can say something like

:4,12 !sort -
 u
 – sort lines 4
 through 1
 2
 keeping only the unique lines.

You can also run commands on a selection using Visua
 l
 mode.

Select what you want – (
 V
 is best for line based operations) then type a colon
 .

Do not ES
 C
 to Norma
 l
 , v
 i
 will do it for you.

It will put this in :'<,'>
 where the tick and bracket collection means the beginning and ending of the selection. Do not remove this!

Now type your command using !
 cmd

Moving around quickly

If you find yourself moving back and forth in a large file, you can create marks with letters assigned to them. From Norma
 l
 , press m
 followed by a letter. To return to that mark, use the single quote (tick)
 '
 followed by the letter. To list current marks :mark
 s
 . Marks made with a capital letter will carry from file to file (within a session). To perform an action between two marks :'x,'y !sort -
 r
 . To move to the last position before a jump '
 '
 .

Other quick movement methods include:

	
w
 /
 b
 – move a word forward/backward

	
f
 cha
 r
 – find
 cha
 r
 ,
 F
 searches backwards

	
%
 – find the matching delimiter
)]
 }
 – useful when programming

	
/
 pattern
 – search for
 patter
 n
 ,
 n
 for next,
 N
 previous,
 ?
 search backwards

Other things

To find help :hel
 p
 . (vim only, help will be completely munged in vi)

To see matching topics
 :help
 patter
 n
 , followed by CTL-
 D
 or ta
 b
 .

In Normal, place the cursor over a word, K
 will take you to the man page for that word.

To enable/disable the pretty colors :syntax on/off

If you have a crash or lose connection during a session :recover
 fil
 e
 or vi -r
 file

If you get discouraged :help!

Config files

Most Linux configuration is done by editing plain text files. In most cases even menu-based Text User Interfaces (TUIs), Graphical Tools, and command line utilities are ultimately just making changes to configuration files that you can also edit manually. Most of these files are located in /et
 c
 and its sub-directories. There are different types of config files with differing conventions but there are generalizations that can be made:

	Anything starting with a hash #
 is a comment and will be ignored by the system.

	The size of white space and blank lines does not matter. Formatting is for humans, not computers.

	If the file has a stanza format or relies on ordered processing, the order will matter.

	Order of options in a simple list will not matter.

	To turn an option on, set it to 1
 ; 0
 will turn it off.

	
Changes made to a config file will not be effective until the service calling it is restarted.

	In EL7/8 this is done with #
 systemctl restart
 name.servic
 e

	
In EL6 this is done with #
 service
 service-name
 restart

	The audit
 d
 service is still controlled this way in EL7/8

There are exceptions to all of these rules, so read the documentation before
 making changes.

There are several ways to protect yourself when editing a config file. The simplest is to make a habit of making a backup copy using c
 p
 .

Another way is to not change the base file at all. Many services will have a standard configuration file (such as /etc/cronta
 b
 for the cron service) and a separate directory for user generated changes (/etc/cron.d
 /
). The base file will be read first, then anything in the .
 d
 directory will be read in lexical order (the same order displayed by l
 s
). The last setting applied takes precedence.

Some services will place user-specific files either in a user's home directory or another user-specific directory. For instance user configuration of cro
 n
 will be in /var/spool/cron/
 username
 /
 . Thus the basic, unchanged configuration can be restored by simply deleting or moving the changed files.

Sometimes a change being made has the potential to break access to a computer, or may make the machine otherwise unusable. Changing the IP address of a machine is one such change. The way around this problem is to backup the file to be changed, then schedule a task in the future that will the restore original unless the task is canceled. If you are locked out, the task will run and everything will be as it was before the change. If your change was successful, you merely need to log in and delete the task before it runs.

Module 4: Users and Groups

When a user is created with the command userad
 d
 , several things happen:

	The files /etc/default/userad
 d
 and /etc/login.def
 s
 are consulted

	A primary group is created for that user by adding a line to /etc/group

	A line is created in /etc/passw
 d
 assigning them a User ID (UID), a primary group, a home directory, and a shell

	A line is created in /etc/shado
 w
 (where password hashes are stored) – with no hash

	A home directory is created in /home

	The contents of /etc/ske
 l
 is copied the home directory. This typically includes any user specific startup or configuration scripts such as bash_profil
 e
 and bashr
 c

	A mail spool file is created for the user in /var/spool/mail

/etc/group, passwd, shadow

When you add a user, a line like this will be created in /etc/grou
 p
 :

bob:x:1004:
 – This says:

	that there is a group called bo
 b

	
with a Group ID (GID) of 100
 4
 .

	the GID is simply the next one available

	This group is assigned to bob as his primary group in /etc/password

	If there were additional members of the group, they would be listed after the final colon.

A line is created in /etc/password
 :

bob:x:1002:1004::/home/bob:/bin/bas
 h

 – This says:

	there's a user bob

	he uses a hashed password x

	his User ID is 100
 2
 , his primary Group ID is 100
 4

	an empty field, which can be used for comments

	bob's home directory is /home/bob

	his shell is /bin/bash

Beginning in EL8 there is no support for all numeric user or group names

A user's identity is established by User ID. By default userad
 d
 starts at the first available number, beginning with 1000. The numbers below 1000 are reserved for system use. The UID, along with the Group ID is used for permissions and ownership. UID and GID will increment up by one from the highest currently assigned. If the last created user is deleted and another created the system will reuse the old UID for the new user. The new user could inherit rights from the previous user. Best practice is to manually assign UID and GID on user creation using the -
 u
 and -
 g
 options
 .

A line will be created in /etc/shado
 w
 :

bob:!!:17312:0:99999:7:::

This is where the actual security information lives. This file is owned by root and should have no permissions whatsoever on it. This says that bob exists and his password hash is !
 !
 This is not a valid password hash. This will change when bob's password is set.

The third field is the last time bob's password was changed in days since the epoch (1 January 1970). If this field is set to 0
 the user must change their password on next login. The remainder of the fields are related to password expiration and such.

useradd

Almost all the default actions of userad
 d
 can be overridden by use of command line switches. Commonly used switches include:

	
-
 G
 – add user to additional groups (no space between them, comma separated).

	
-
 p
 – password. This is an encrypted value, not a simple plaintext password.

	
-
 s
 – use a different shell. Often
 /sbin/nologi
 n
 to prevent interactive login.

	
-
 e
 – expire date in YYYY-MM-DD format, for temporary accounts

	
-
 u
 /
 -
 g
 – manually set the user or Group ID

	

-
 Z
 – manually specify an selinux user role for this user.

	default is unconfined_u

	
STIG specifies

	administrators should be sysadm_
 u
 or staff_u

	all others should be user_u

	to view available roles

semanage user –l

	to view current user-role mappings

semanage login -
 l

/etc/default/useradd, /etc/login.defs

For security some settings should be changed in /etc/default/useradd
 .
 These values will be applied to all users created after making the changes. They will not be applied retroactively, so it is best to make these changes before creating users.

	

INACTIV
 E
 – controls inactivation of accounts with expired passwords, in days

	
-
 1
 will never disable accounts

	

0
 will disable the account immediately upon password expiration

	
This is the standard for government systems

	

EXPIR
 E
 – date that the user's password expires

	
set either in days since the epoch (1 Jan 1970), or YYYY-MM-DD format

	
do
 not
 set this to
 0
 while
 INACTIVE
 is also
 0
 as users created this way will never be able to log in

	
in most cases this is left blank, with user expiration set manually during creation

	

SKE
 L
 –default skeleton directory, copied to new user’s home directories

	
contains files such as
 .bashr
 c
 and
 .bash_profil
 e
 which configure a users environment upon login

There are several fields that must be set in /etc/login.def
 s
 on government systems:

	
PASS_MAX_DAY
 S
 – the maximum password age. This should be set to
 6
 0
 .

	
PASS_MIN_DAY
 S
 – minimum time between password changes. Set this to
 1
 .

	
PASS_MIN_LE
 N
 – the minimum password length. This should be
 1
 5
 .

	
PASS_WARN_AG
 E
 – the number of days before password expiration occurs. The default is
 7
 ; this may be short for some users.

	
FAIL_DELA
 Y
 – the time in seconds between login attempts. This is
 not
 a default field.

It must be added and set to
 4
 .

	
There are several others that must remain at default values:

	
UMASK 077

	
ENCRYPT_METHOD SHA512

	
CREATE_HOME ye
 s

passwd, usermod, userdel

After you have created a user you will need to set their password using passw
 d
 . Common switches for passw
 d
 include:

	
-
 l
 /
 -
 u
 – lock and unlock a user's account

	
-
 e
 – expire. Forces a password change at next login

	
-
 x
 – set maximum days for expiration

	
-
 S
 – show status of the user's password

Global password parameters are specified in /etc/login.def
 s
 as discussed above.

Password quality rules are enforced by PAM – Pluggable Authentication Modules. There are many files used to configure PAM and any changes to them should be approached with care, as you can permanently disable a system with a typo.

Account lockout, password encryption, and password reuse policies are configured in /etc/pam.d/system-aut
 h
 and /etc/pam.d/password-auth

The guidelines in the STIG should be followed as written.

User account information can be modified by the usermo
 d
 command. Options are similar to, but not the same as userad
 d
 and passw
 d
 :

	
-
 L
 / -
 U
 – lock and unlock

	
-
 g
 / -
 u
 – change GID / UID

	
-
 l
 – change login name

	
-a
 G
 – append secondary groups (will wipe current group membership with out -
 a
)

Users can be deleted with userde
 l
 (
 -
 r
 removes their home directory and mail spool as well).

If you wish to create multiple users from a file, this can be done with newuser
 s
 .

Passwords can be set en masse by using the chpassw
 d
 command.

vipw, vigr

You can also create and modify users and groups by editing the relevant files directly, though this is not recommended as it is possible to break a system completely by making a mistake. If it is at all possible, use the tools mentioned above.

If the normal tools simply will not do the job, there are special editors provided which provide file locking and some level of sanity checking These are vip
 w
 and vig
 r
 for the password and group files respectively. With the -s
 switch, they can be used to edit the relevant shadow files. There is also a visud
 o
 to edit the sudoer
 s
 mentioned below.

groupadd, groupmod, groupdel, groupmems, id

Groups can be manipulated with commands that mirror those for users: groupad
 d
 , groupmo
 d
 , and groupde
 l
 .

Users can be added to secondary groups

	on user creation with #
 useradd -
 G
 groupname

	or after creation with #
 usermod -a
 G
 groupname username

	or with #
 groupmems -g
 groupname
 -a
 username

Group membership can be determinined using id
 usernam
 e
 .

su, wheel

As we said before, best practice is to never login as root. A secure system will have strong controls on local root login and will not allow remote root login at all. This is configured by setting PermitRootLogin n
 o
 in /etc/ssh/sshd_confi
 g
 . To perform administrative work on such a machine, you must first login as a normal user.

Once logged in there are a few options to elevate your privileges. On a default installation, if you have the root password you can change to root by using the s
 u
 (substitute user) command and entering the root password. If you wish to execute commands in the environment (home directory, startup scripts, $PATH, etc.) that root would have if logged in directly use su
 -

Root can s
 u
 to any other user with no additional authentication required. By default any user can s
 u
 to any other user if they know that user's password. At the very least you will want to restrict the ability to s
 u
 to root to a small group of administrators. The special group whee
 l
 (GID 10) is customarily the administrative group. To restrict use of su
 to members of whee
 l
 :

	Add users to whee
 l
 with usermod -a
 G

	Verify group membership with id
 username

	In /etc/pam.d/su
 uncomment this line:

auth required pam_wheel.so use_ui
 d
 .

sudo, sudoers

Restricting s
 u
 somewhat strengthens the security posture of a computer, but leaves a problem: everyone who has a need for administrative control must have the root password. It is also important to note that a user who has become root via s
 u
 is
 root and will be audited as such. To avoid these problems we use sud
 o
 .

When a user runs sud
 o
 the following command is executed as if
 it were run by root, but the user does not become
 root. The user may be prompted for their password, not for the root password.

A normal user will be required to type sud
 o
 before every privileged command issued. In bas
 h
 the last command can be reissued by simply typing !
 !
 If you type a command that requires sudo
 and get the dreaded Permission denie
 d
 response, reissue it with

sudo !
 !

To grant users the ability to sud
 o
 :

	Add the users to wheel

	Verify group membership with id

	Run visud
 o
 – do not directly vi

	Uncomment the line

%wheel ALL=(ALL) ALL

	
If you wish to change the five minute password timeout for sud
 o
 , add a line:

Default
 s
 timestamp_timeout=
 X

	Where X
 is time in minutes

	
-
 1
 is never timeout

	Test the user's ability to login and use sud
 o
 before
 further securing the machine

Individual users or groups can be allowed a limited command set with or without a password. For instance, to allow users in the backu
 p
 group to mount and unmount cd/dvd media when logged in locally add this line to sudoers

%backup localhost=/sbin/mount /mnt/cdrom, /sbin/umount /mnt/cdrom

After sud
 o
 is configured and tested, you can lock down the root account:

	change the password to something random

	lock the password with usermod -L

	expire the password with usermod -e

	change the shell to /sbin/nologi
 n
 with usermod -s

who, w, lastlog, last, lastb

As an admin, you need to know who is logged in, when they logged in, and what they are doing.

	
wh
 o
 –who is logged in, when they logged in and from where

	
w
 – all that plus usage stats and the current command

	

lastlo
 g
 – last login of each user, sorted by UID

	For better viewing: lastlog | grep -v Never

	

las
 t
 – successful logins by time

	The pseudo-user reboo
 t
 logs in on every startup.

To see all reboots: last reboo
 t

	

last
 b
 – unsuccessful logins, from newest to oldest.

	To reverse the order: lastb | tac

loginctl

A newer command which is integrated with system
 d
 and login
 d
 is loginct
 l
 . It displays and controls active users and sessions. Useful sub-commands include:

	
list-user
 s
 – show active users

	
terminate-user
 usernam
 e
 – end all processes for user

	

kill-user --signal
 XX usernam
 e
 – send a signal to all processes of a user

	
signals are discussed later, for now:
 9
 =
 kill
 ,
 1
 9
 =
 pause
 ,
 1
 8
 =
 resume

	
list-session
 s
 – show active sessions

	
session-statu
 s
 session-i
 d
 – show details, including log snippets, of a session

	
terminate-sessio
 n
 session-i
 d
 – end all processes in a session

	
kill-sessio
 n
 session-i
 d
 – send a signal to all processes of a session

	
enable-linger
 usernam
 e
 – allow a user to run processes without logging in

Module 5: Permissions and Ownership

Ownership

There are two entities granted specific permissions to any file or directory: the owning user and the owning group. Users may always change permissions (and ownership) on the files they own, even if they have no access to the files in any other sense. Proper file ownership is an important security concept. To change ownership on a file use the chow
 n
 command:

chown bob:sales
 file

To change only a file’s owner, we would supply a username without specifying a group:

chown bob
 file

To change only the owning group, place the group name after a colon:

chown :sales
 file

Permissions

Earlier, we observed output similar to this:

ls -l

total 56

-rwxrwxrwx.
 1
 root root
 58 May 17 09:31 file

Where -rwxrwxrw
 x
 is the permissions string, and root roo
 t
 lists the owner of the file and the owning group. The first character of the permission string is not part of the permissions set, and is instead used to identify the type of file we are dealing with. Starting with the second character, we see this: rwxrwxrw
 x
 .

This string can be broken into 3 sets, denoting permissions this way:

Owning User: rwx (read, write, and execute)

Owning Group: rwx

Others: rwx

Or stated another way: U:rwx G:rwx O:rwx

The output of ls –
 l
 displays the permission string using alphabetic characters; the system sees them as 12 binary bits where Read = 4, Write=2, and Execute=1. Each rw
 x
 triplet will evaluate to a decimal value between 0 and 7, for a total of 8 possible values. Because of this, these permission strings are called “octal permissions”. There is one hidden triplet which precedes the standard permissions. It controls the Special Purpose Access Modes discussed below. The triplets can be treated as 4 concatenated 3 bit strings:

	
String

	
Decimal

	
Binary

	
Meaning

0

	
000

	
no permission

	
--x

	
1

	
001

	
execute only

	
-w-

	
2

	
010

	
write only

	
r--

	
4

	
100

	
read only

	
-wx

	
3

	
011

	
write, execute – no read

	
r-x

	
5

	
101

	
read, execute – no write

	
rw-

	
6

	
110

	
read, write – no execute

	
rwx

	
7

	
111

	
read, write, and execute

chmod

The owner of a file and roo
 t
 can change the permissions on a file by invoking chmo
 d
 . The chmo
 d
 command accepts either octal or symbolic notation:

chmod 755 lis
 t
 or

chmod u=rwx,g=rx,o=rx lis
 t

These are the symbols accepted by chmo
 d
 :

	
u
 – set permissions for the owning user

	
g
 – set permissions for the owning group

	
o
 – set permissions for others (not the owning user or in the owning group)

	
a
 – set permissions for all: user, group, and other

	
+
 – add a permission to an existing set

	
-
 – subtract a permission from an existing set

	
=
 – set an exact permission

Special Purpose Access Modes

Earlier, we mentioned that there are twelve bits for permissions, but have only discussed nine bits (three each for User, Group, and Others). The other three control a set of file behaviors referred to as Special Purpose Access Modes
 or SPAMs. This set is comprised of: SUI
 D
 , SGI
 D
 , and the sticky bi
 t
 .

SUI
 D
 allows a file to be executed with the permissions of the file’s owner rather than the user who invoked it. Normally, a process executed by a user could not perform any tasks that the user himself did not have permissions to perform. With SUI
 D
 , a process will be able to do anything its owner could do, regardless of who runs it. This is obviously dangerous, and must be carefully implemented and monitored.

SGI
 D
 is similar in concept to SUI
 D
 , but it applies to the named group as opposed to individual user accounts. SGI
 D
 is best used on directories, where it causes all new files created in that directory to be owned by the directory’s owning group (rather than the primary group of the creating user).

The sticky bi
 t
 prevents anyone other than a file’s owner or roo
 t
 from deleting or renaming it, regardless of permissions. Normally, any user with write and execute permissions for the directory a file inhabits can delete or rename the file. The sticky bi
 t
 prevents this. Often, this is set on the /tm
 p
 directory (which, by nature, must be writeable and executable by many users). Doing so prevents users from destroying temporary files they do not own.

The binary values for the three SPAMs are: SUID=
 4
 , SGID=
 2
 , sticky bit=
 1
 .

The chmo
 d
 command is used to set or unset Special Purpose Access Mode values:

chmod 7777 file

ls -l file

-
 rw
 s
 rw
 s
 rw
 t
 .
 1 root root 15 Jun 19 09:49 file

The first 7
 in the command chmod 7777 file
 causes SUI
 D
 , SGI
 D
 , and stick
 y
 to be set. These are represented by the underlined characters in the permission string (rw[s
 uid] rw[s
 gid] rw[st
 icky]). We can do this in symbolic notation as well:

chmod u+s,g+s,o+t file

ls -l file

-
 rw
 s
 r-
 s
 r-
 T
 .
 1 root root 15 Jun 19 09:49 file

Note the uppercase T
 at the end of the string. This indicates that the sticky bi
 t
 has been enabled, but that other
 s
 do not currently have execute permission on the file. We would see similar behavior with SUI
 D
 and SGI
 D
 .

umask

To control permissions on new files and directories, we may use umas
 k
 . A umas
 k
 consists of a set of permissions to be subtracted
 from the system default of 077
 7
 when new files and directories are created. A final check will remove execute permissions from files, but not directories, when they are created.

For example, if the umask was 002
 7
 the following would occur:

	A new file/directory is created with default permissions of 0777

	
umas
 k
 is subtracted from
 077
 7
 , leaving
 0750

	If the target is a file, remove any execute permissions, leaving 0650

The current umas
 k
 has no effect on existing files. It only affects permissions on new files created after it has been set.

To see the current mask: # umas
 k

To temporarily set the mask to a different value: # umask 002
 7
 .

In EL the default umask for root and system users is 002
 2
 and regular users is 000
 2
 . STIG stipulates that the default for all interactive users should be set to 007
 7
 . This is defined in /etc/bashr
 c
 , and /etc/profil
 e
 and can be changed there. To set an individual user's default mask, place the desired umas
 k
 command string into .bashr
 c
 in their home directory.

Access Control Lists

The built-in Linux permissions define access for three sets of users: the owning user, the owning group, and all others. For more granular permissions, we must turn to Access Control Lists.

ls -l

-rw-rwxr--
 +
 1 root root 30 Jun 19 08:12 file

Note the plus +
 at the end of the permission string above. This indicates the presence of an ACL. We can retrieve an ACL with the getfac
 l
 command.

ls -ld /test

drwx------. 4 root root 100 Jun 22 10:20 /test

getfacl /test

getfacl: Removing leading '/' from absolute path names

file: test

owner: root

group: root

user::rwx

group::---

other::---

Above, we can see that the /tes
 t
 directory currently has no extended ACLs applied to it. The permissions in the output of getfac
 l
 matchs the permissions reported by ls -
 l
 , and there is no +
 character at the end of the permissions string.

ACLs are set using setfac
 l
 which has the following options:

	
-
 m
 – modify an ACL

	
-
 x
 – remove an ACL entry

	
-
 b
 – remove all ACLs for file

	
-
 R
 – apply ACL recursively through subdirectories

	

[d]:u|g|o|m:
 UID
 |
 GID
 :
 perm
 s
 – followed by the target, where:

	
d
 – [optional] sets this as default

	
u
 ,
 g
 ,
 o
 – user, group, or other

	
m
 – mask, sets effective rights mask (like
 umas
 k
)

	
UI
 D
 or
 GI
 D
 – who we are affecting

	
perm
 s
 – in rwx format

Let’s explore some sample usage:

	
setfacl -m u:bob:rwx /tes
 t
 – Add user
 bo
 b
 with full permissions

	
setfacl -m g:sales:rw /tes
 t
 – Add the group
 sale
 s
 with read and write

	
setfacl -m d:g:sales:rw /tes
 t
 – Add permissions for
 sale
 s
 to the default ACL

	
setfacl -m o::r /tes
 t
 – Set permissions for
 other
 s
 to read only

	
setfacl -m m::rw /tes
 t
 – Set the effective rights mask to
 rw
 -
 , masking execute away from
 bob

	
setfacl -m d:m::rw /tes
 t
 – Make that mask part of the default ACL

The result should look something like this:

getfacl /test

getfacl: Removing leading '/' from absolute path names

file: test

owner: root

group: root

user::rwx

user:bob:rwx

#effective:rw-

group::---

group:sales:rw-

mask::rw-

other::r--

default:user::rwx

default:group::---

default:group:sales:rw-

default:mask::rw-

default:other::r—

In EL7/8, ACL support is on by default for both xf
 s
 and ext
 4
 filesystems. Some filesystems will not support ACLs by default. To enable ACL support, pass the ac
 l
 option during mount:

mount –o +acl /dev/sdb1 /testdir

Or alter the default mounting options stored in the filesystem superblock using tune2f
 s
 :

tune2fs –o +acl /dev/sdb1

Module 6: Regular Expressions

Linux provides several powerful tools for working with text in files and input streams. These include gre
 p
 , se
 d
 , and aw
 k
 which perform decidedly different functions, but the central mechanism for each involves regular expressions
 (RegEx).

grep

Regular expressions provide the ability to match patterns in text. This simple description belies the incredible utility of regular expressions. The first tool to be addressed is gre
 p
 , which can be used to search through text, match a defined pattern (regular expression), and print the resulting matches. It uses 3 broad categories of commands to define this pattern:

	
Pattern:
 these define the string pattern we are searching for.

	
Anchors:
 these define the acceptable position for a matched pattern.

	
Modifiers:
 These modify how grep treats the character(s) immediately preceding them.

gre
 p
 also relies on two types of character interpretations:

	
Literal characters:
 characters with no special meaning, i.e. the character a
 is the literal lowercase alphabetic character a
 .

	
Metacharacters:
 characters with additional meanings beyond the literal, i.e. the dollar sign $
 is interpreted as an anchoring metacharacter, translating to “at the end of a line”.

Since gre
 p
 treats characters as literals or metacharacters situationally
 , certain characters must be escaped
 . That is, they must be flipped, depending on the situation, from a literal to a metacharacter or vice versa. This can lead to regular expressions that look something like this:

'@[a-zA-Z_.]
 \
 +
 \
 ?
 \
 .[a-zA-Z]
 \
 {2,3
 \
 }'

We will come back to this expression at the end of the module. For now, notice the backslashes in the string above. Each of these escapes the character that follows it. In basic grep
 , the following characters are treated as literals
 : + ? | {} ()

If we wish them to be treated as metacharacters
 , that is to have a special meaning, we must escape them with the backslash: \+ \? \| \{ \} \(\)

Extended grep
 inverts this logic: these characters are metacharacters by default, and must be escaped if we want them treated as literals. Consider the examples below where -
 E
 causes gre
 p
 to treat the RegEx as an extended regular expression
 . We could also use the egre
 p
 , which is equivalent, but deprecated. When dealing with gre
 p
 , always be mindful of whether you are using a basic regular expression or an extended regular expression, and apply appropriate escapes as required.

With escapes:

grep '@[a-zA-Z_.]\+\?\.[a-zA-Z]\{2,3\}' /test/file

tim@honey.net

grep -E '@[a-zA-Z_.]\+\?\.[a-zA-Z]\{2,3\}' /test/file

###<<< - no results

Without escapes:

grep -E '@[a-zA-Z_.]+?\.[a-zA-Z]{2,3}' /test/file

tim@honey.net

grep '@[a-zA-Z_.]+?\.[a-zA-Z]{2,3}' /test/file

###<<< - no results

Character Sets

Moving beyond the backslashes in the example regular expression, we can see groups of characters like this [a-zA-Z_.]
 These are called character sets
 . These evaluate to:

	
[a-z
]
 – Match any single lowercase alpha character

	
[A-Z
]
 – Match any single uppercase alpha character

	
[abc
]
 – Match any one of a
 , b
 , or c
 .

	
[0-9
]
 – Match any single digit, 0
 through 9
 .

	
[^a2
]
 – Match any character which is NOT a
 or 2

	

 [.
]
 – When enclosed in braces, a literal period.

	 .
 – A period not enclosed in braces, match any single character other than line break

Returning to the example [a-zA-Z_.]
 This can be interpreted as "any upper or lowercase alphabetic character, or an underscore, or a period."
 Note that a dot inside of a character set is never interpreted as a metacharacter, but by default a dot outside of a character set will be a metacharacter representing any single character
 .

Here are some examples of character sets, working with a file called lis
 t
 containing the following text :

 red

 road

 read

 radical

 The road is radical.

 all lowercase

 0123456789

 123

 789

 ALL CAP
 S

To find lines in this file that contain either re
 d
 OR ra
 d
 , we would use:

grep
 'r[ea]d'
 list

red

rad
 ical

The road is
 rad
 ical.

Above, gre
 p
 matched the pattern re
 d
 OR ra
 d
 in three lines. It did not matter if this pattern occurred inside of a larger string. More interesting, however, is what gre
 p
 did not match. Notice that rea
 d
 was not matched, despite containing both the e
 and the a
 from the defined character set. Let’s look at the expression again: ‘r[ea]d’
 This evaluates as

"Match anything that starts with an r
 , followed by either
 an e
 OR an a
 , followed by a d
 ."

To find lines which contain capital letters, we could do this:

grep
 [A-Z]
 list

T
 he road is radical.

ALL CAPS

Simple enough. But what if we wanted to find only lines that did NOT contain uppercase letters? We might try this:

grep
 [a-z]
 list

red

road

read

radical

T
 he road is radical.

all lowercase

This got rid of the ALL CAP
 S
 line, but still matched Th
 e
 . The expression: [a-z]
 evaluates as: "Match any lowercase character." In The road is radica
 l
 , only the T
 is not matched. Every other character was matched, and so the line was returned.

We might also try “negation”. This involves the caret ^
 metacharacter. When placed inside of a character set, it will negate
 the pattern that follows it. An example:

grep
 '[^0-9]'
 list

red

road

read

radical

The road is radical.

all lowercase

ALL CAPS

Without the caret, we would have expected this to return any lines containing a digit. Instead, we have returned all lines which contain “characters that aren’t digits”. If we tried this with our earlier example (lines which do NOT contain uppercase characters), it would still return lines with mixed case (lines containing characters which weren’t uppercase letters)
 .

To get lines which did not contain any uppercase characters, use -
 v
 to invert the match and return only lines which do not contain the given pattern.

grep
 -v [A-Z]
 list

red

road

read

radical

all lowercase

0123456789

123

789

Anchors

Suppose we wanted to match capital letters only if they occur at the beginning of a line. We can’t do this with character sets alone. The dollar sign $
 and caret ^
 will find matches at the end or beginning of a line respectively. These are known as anchors
 .

To do find all lines that begin with a capital letter, we will place a caret ^
 before the pattern we wish to match:

grep
 '^[A-Z]'
 list

The road is radical.

ALL CAPS

To find a pattern at the end of a line, we use the dollar sign $
 placed immediately after the pattern we are trying to locate. To match all lines ending with the lowercase letter “d”:

grep
 'd$'
 list

re
 d

roa
 d

rea
 d

Note that anchor characters lose their special meaning if they are not placed at the beginning or end of a pattern. To explain this, let’s add two lines to our list file and conduct an experiment:

echo '$1.51' >> list

echo '$1.52' >> list

grep
 '1$'
 list

$1.5
 1

grep
 '$1'
 list

$1
 .51

$1
 .52

In the second example, the anchor was ignored, or, more specifically, was interpreted as a literal. Any lines containing the character string $
 1
 were returned.

Modifiers and Alternation

We may also modify how often a pattern must be matched in order for gre
 p
 to return it. These characters are modifiers:

	
 ?
 – Match the preceding 0 or 1 times

	
 *
 – Match the preceding 0 or more times

	
 +
 – Match the preceding 1 or more times

	
 {N}
 – Match the preceding exactly N times

	
 {N,}
 – Match the preceding N or more times

	
{N,M}
 – Match the preceding between N and M times

Let’s try pulling some numeric strings out of our target file. This evaluates as "Return any line in which a digit, 0 through 9, occurs at least once."

grep
 -E '[0-9]+'
 list

0123456789

123

789

This evaluates as "Return any line containing a sequence of 3 digits, 0 through 9."

grep
 -E '[0-9]{3}'
 list

0123456789

123

789

This evaluates as "Return any line containing a sequence of 4 digits, 0 through 9."

grep -E '[0-9]
 {4}
 ' list

0123456789

If we had wanted to return lines containing only
 a 3-digit number, and nothing else
 , there are two solutions. One way is to use anchors and modifiers, like this:

grep -E
 '^[0-9]{3}$'
 list

123

789

This instructs grep to return lines in which:

	
 ^

 – the line begins, then

	
[0-9]{3
 }
 – 3 digits (0 through 9) appear in sequence, and then

	
 $

 – the line ends

We could also use the -x
 option, which instructs gre
 p
 to match the given pattern against entire lines
 , rather than finding the pattern within a line
 :

grep
 -x '[0-9]\{3\}'
 list

123

78
 9

Finally, we may also use alternation.
 Alternation allows us to specify multiple possible patterns, only one of which must be matched to return a result. The metacharacter for alternation is the pipe |
 which may be read as OR. To match lines beginning with r
 OR ending with 3
 :

grep
 -E '^r|3$'
 list

r
 ed

r
 oad

r
 ead

r
 adical

12
 3

Here we used -
 E
 to avoid having to escape the pipe metacharacter.

Backreferences

There are also some situations in which we may have an idea of what sort of pattern we want to match, but not precisely which variant of that pattern will be returned. If we wanted to find all instances in which a word was repeated, we might start by creating a pattern that would match any word. We know it would be composed only of uppercase and lowercase alphabetic characters. A set to match any single character like that might look like this: [a-zA-Z]

The problem now is that we have no idea how long a word might be. It would be at least one character long, but could be composed of many. We have a way to address this: [a-zA-Z]+

The plus sign (+
) functions as a modifier
 ; it evaluates as “match the preceding pattern one or more times”. In other words, a match for the pattern we’re working with would be “one or more alphabetic characters in sequence”.

To tell grep that we want to find this pattern ONLY when it repeats we need to introduce a new concept: backreferences
 . A backreference allows regular expressions to store a match and refer to it later. To create a stored pattern, we simply surround the match criteria with parenthesis: ([a-zA-Z]+)

We can store up to nine backreferences in a single expression, and call them with a backslash, followed by a number (1 through 9, based on order of occurrence). To practice this, let’s create a small file and run our test pattern against it:

grep -E '([a-zA-Z]+)' testfile

the the

the these

there thesis

the thesis

there there

one one on
 e

This returns the entire contents of the file (though it wouldn’t have matched any lines containing only numbers, if they had been present). To match repetition, we’ll tell grep to match the pattern, store it at /
 1
 , and then try to match that pattern again immediately following a space:

grep -E '([a-zA-Z]+) \1' testfile

the the

the these

the thesis

there there

one one one

This is close, but we have some odd behaviors. In the second and third lines the stored pattern was matched inside of a longer string. This isn’t exactly the desired behavior. To fix this, we need to tell grep to respect word barriers. We can do this by using less than <
 and greater than >
 , but we’ll need to escape them.

grep -E '(\<[a-zA-Z]+\>) \<\1\>' testfile

the the

there there

one one one

Now we have it. If you’re concerned about the last line, remember that grep returns entire lines by default. You may troubleshoot grep to a degree by instructing it to return only the matches it finds, rather than the line in which the match occurs. We can do so using the -
 o
 option, like this:

grep -oE '(\<[a-zA-Z]+\>) \<\1\>' testfile

the the

there there

one one

By default in both EL 7 and 8 grep is aliased so that the matched portion of the lines will be highlighted with color. If this is not the case use the --color option.

grep --color
 'pattern' file

Another Look

Let’s take another look at the expression we introduced at the beginning of this module.

'@[a-zA-Z_.]\+\?\.[a-zA-Z]\{2,3\}'

We should be able to break it down now:

	
 @

 – a literal @ symbol

	
[a-zA-Z_.
]
 – any lowercase or uppercase alpha character, an underscore, OR a period

	
 \+

 – match the preceding expression at least once

	
 \?

 – match the preceding expression no more than once

	
 \.

 – a literal period

	
[a-zA-Z]
 – any alpha character, upper or lowercase

	
 \{2,3\}
 – match the preceding either 2 or 3 times; no more, no less

If we apply that search to a file containing this:

 tim@honey.pot.not

 tim@honot.not

 tim@sonot.au

 tim@bonnot

 tim.turner

 tim.turner@bon_ney.con

 @kim.com

 a@b.c

	Which of these lines will be matched? Which won’t, and why?

	What sort of patterns could we place before the @ symbol?

	Can you think of other ways to achieve the same goals?

	Can you improve readability by eliminating the need to escape some of the characters?

sed

The man pages for sed and awk describe them as follows:

	
se
 d
 – stream editor for filtering and transforming text

	
aw
 k
 – pattern scanning and processing language. On EL7/8 this links to
 /bin/gawk

Both make use of regular expressions, and both are complex enough that entire books have been written regarding their usage. We cannot, and will not attempt to, cover these utilities comprehensively. Instead, we will focus on some of the more pedestrian uses of each – commands of value to system administrators.

The basic invocation of se
 d
 is as follows: sed
 options
 commands
 fil
 e
 . The option
 s
 alter the standard behavior of se
 d
 ; the command
 s
 define what se
 d
 will do.

To understand why se
 d
 does things the way it does, we must first consider se
 d
 ’s standard behavior. Without options, se
 d
 will do the following:

	Read the first line of input into the pattern space (sed’s workspace buffer)

	Perform the commands from the commands section

	Print the contents of the buffer to output

	Clear the buffer

	Read the next line of input into the buffer

We can demonstrate this process by calling se
 d
 without commands against a file (we’ll use a modified copy of our host
 s
 file as a target):

sed '' hosts

192.168.1.166 example-svr example-svr.example.not

192.168.1.165 example-clnt example-client.example.no
 t

Above, se
 d
 performed its standard behavior by reading in the first line, doing nothing, printing the line to STDOUT, clearing the buffer, and repeating the behavior.

If this description of se
 d
 ’s behavior seems unnecessary, consider the following: there is a command, p
 , which explicitly instructs se
 d
 to print whatever is currently in the working buffer to output. We know that, as part of its standard behavior, se
 d
 will already print the contents of the buffer after running any specified commands. The result? See below:

sed 'p' hosts

192.168.1.166 example-svr example-svr.example.not

192.168.1.166 example-svr example-svr.example.not

192.168.1.165 example-clnt example-client.example.not

192.168.1.165 example-clnt example-client.example.not

Each line was printed twice. We could suppress the automatic printing step from the standard behavior with an option, -
 n
 . Let’s try it:

sed -n 'p' hosts

192.168.1.166 example-svr example-svr.example.not

192.168.1.165 example-clnt example-client.example.not

Keep in mind that se
 d
 will perform any commands listed in the commands section in order, from left to right. Let’s put multiple commands into a single statement using the semicolon as a separator.

sed 'p;s/example/CHANGED/' hosts

192.168.1.166 example-svr example-svr.example.not

192.168.1.166
 CHANGED
 -svr example-svr.example.not

192.168.1.165 example-clnt example-client.example.not

192.168.1.165
 CHANGED
 -clnt example-client.example.not

Walking through the steps, se
 d
 :

	Reads a line into the buffer.

	Performs the command p
 : print the unmodified line.

	Performs the command s
 , substituting the first instance of exampl
 e
 with CHANGE
 D
 .

	Finishes its work on the line and prints the results

	Clears the buffer

	Repeats, reading the next line into the buffer.

Armed with this understanding, we can move on to a discussion of se
 d
 ’s more obvious uses.

Perhaps the most common use for se
 d
 is performing simple pattern substitution; that is, finding a string and replacing it with something else. This is what was done with the earlier command 's/example/CHANGED/
 '
 .

Let’s take a closer look.

cat hosts

192.168.1.166 example-svr example-svr.example.not

192.168.1.165 example-clnt example-client.example.not

sed 's/example/production/' hosts

192.168.1.166
 production
 -svr example-svr.example.not

192.168.1.165
 production
 -clnt example-client.example.not

Above, se
 d
 substituted the word productio
 n
 for exampl
 e
 . It will do this once per line unless directed otherwise. A g
 at the end of a command directs se
 d
 to perform the action 'globally':

sed 's/example/production/g' hosts

192.168.1.166
 production
 -svr
 production
 -svr.
 production
 .not

192.168.1.165
 production
 -clnt
 production
 -client.
 production
 .not

Let’s break this command down:

	
 s

 – substitute

	
 /

 – delimiter (or separator)

	
example
 – what we want to replace

	
 /

 – delimiter

	
productio
 n
 – what we want to replace it with

	
 /

 – delimiter

	
 g

 – globally – where to make the substitution in the line

To save the results, use command line redirection (
 >
 or >
 >
) to a different file. If you try to overwrite the existing file, it will be emptied before se
 d
 begins executing. To get se
 d
 to save its changes in the source file, use the -
 i
 option (in-place edit).

We might also like se
 d
 to replace patterns based on regular expressions rather than literal character strings. To test this, let’s first make some alterations to our text file:

sed -i 's/example/production/' hosts

cat hosts

192.168.1.166 production-svr example-svr.example.not

192.168.1.165 production-clnt example-client.example.not

Let’s suppose we wish to accomplish two things: replace all remaining instances of exampl
 e
 in the hostname portion only
 with productio
 n
 , and replace all dashes with underscores. Here’s one way to do this:

sed 's/\(production\|example\)-/production_/g' hosts

192.168.1.166 production_svr production_svr.example.not

192.168.1.165 production_clnt production_client.example.not

Breaking it down:

A couple of notes regarding sed

The ampersand &
 has a special meaning in se
 d
 : it corresponds to a previously matched pattern. gre
 p
 allowed matched patterns to be stored using numeric backreferences 1-
 9
 . se
 d
 accepts these, and adds &
 for use in the replacement section of a substitution command.

Consider the following file, named subtes
 t
 :

1-2-3

1.2.3

1:2:3

If we wished to double the dashes, dots, and colons, we could do it by using &
 , like this:

sed 's/[.\:-]/&&/g' < subtest

1--2--3

1..2..3

1::2::3

Note that parentheses were not required to use the ampersand. Also note, when using a hyphen in a character set, that the hyphen should be placed last in the list so that it is not interpreted as part of a range.

As a final thought, we would like to point out that the use of forward slashes as delimiters (or separators) in se
 d
 is by convention only. Really, any character that follows the “s” in the substitution command can be used as a separator. This is also a valid sed expression, using pipe |
 as a delimiter:

sed 's|[.\:-]|&&|g' < subtest

1--2--3

1..2..3

1::2::3

se
 d
 is a powerful tool, and the uses of it go far beyond what is covered in this material. We encourage students to further explore se
 d
 if the opportunity presents itself; it can yield tremendous amounts of utility.

awk

Although aw
 k
 usage can be tremendously complex, there are times when simple invocations of aw
 k
 are the best tool for accomplishing a particular task. In this section, we will briefly discuss how aw
 k
 treats files, then proceed to a series of small examples with accompanying explanation.

aw
 k
 sees files as a series of records and fields, which it reviews one line at a time. The default field separator is whitespace, and the default record separator is a linefeed. Consider this:

Apple $1.95

Pear $0.57

Strawberry $1.26

By default, aw
 k
 would see this as a set of 3 records, with 2 fields each.

Let’s suppose we only wanted the information from the first field in our file (the fruit names). We could ask aw
 k
 to prin
 t
 them in this way:

awk '{ print $1 }' pfile

Apple

Pear

Strawberry

$
 1
 , in this case, is a built-in variable that aw
 k
 understands as “the first field”. We could print the second field with $
 2
 . $
 0
 is the entire line, and $N
 F
 (Number of Fields) functions here as a shortcut to the last field:

awk '{ print $0 }' pfile

Apple $1.95

Pear $0.57

Strawberry $1.26

awk '{ print $NF }' pfile

$1.95

$0.57

$1.26

We can also redefine the field separator from whitespace to something else. Let’s try this with /etc/passwd:

awk -F: '/1[0-9][0-9][0-9]/ { print $1,$3 }' /etc/passwd

Lisa 1003

caroline 1004

lori 1005

bob 1006

ldapuser1 1007

ldapuser2 1008

Let's break that down:

	
 -F:

 – set field separator to colon

	
/1[0-9][0-9][0-9]
 /
 – match this pattern (it’s a RegEx!)

	
 { print $1,$3 }
 – print fields 1 and 3

awk substitutions

To this point, we’ve used aw
 k
 in a fashion silmilar to gre
 p
 . It can also be used much like se
 d
 , to perform substitutions. As with se
 d
 , we can specify whether we wish those substitutions to be made once per line (record) or globally within a line. To do this, we will use two functions built into awk: sub
 and gsub
 .

Returning to a previous example file, we can demonstrate these functions by replacing the sting “the” with the string “THE”:

awk '{ sub(/the/,"THE"); print }' regtest

THE the

THE these

THEre thesis

THE thesis

THEre there

one one one

Breaking it down, we see:

	
awk ‘{ }
 ’
 – the invocation of awk and the braces containing the program

	
 sub()

 – the substitution function (one replacement per record)

	
 /the/,
 – the pattern we are searching for, comma is a delimiter

	
 “THE”

 – what to replace matched patterns with

	
; prin
 t
 – semicolon separates commands, print prints to STDOUT

	
regtes
 t
 – the input file

To replace all matches, rather than a single match per record, we could instead use the gsu
 b
 function, as follows:

awk '{ gsub(/the/,"THE"); print }' regtest

THE THE

THE THEse

THEre THEsis

THE THEsis

THEre THEre

one one one

The invocation for the two functions is identical, but we can now see that all matches have been replaced, as desired.

awk programs

We can write aw
 k
 programs as if they were shell scripts. Here is one called /awkis
 h
 :

#!/bin/gawk -f

BEGIN { print "Record and Fields of:" }

{ if(NR == 1) { print FILENAME }; }

END { print "\n""Num Recs:\t",NR,"\n""Num Fields:\t",NF }

Running that gets us this:

/awkish pfile

Record and Fields of:

pfile

Num Recs: 3

Num Fields: 2

aw
 k
 programs consist of three main sections:

	
BEGI
 N
 – We run these lines first. Often used to make header or set variables.

	
BOD
 Y
 – Typically where we put the bulk of our work.

	
EN
 D
 – Runs these lines last. Often used to create a footer.

In the script, we specified a program which should be used to interpret our commands:

#! /bin/gawk -
 f
 . The -
 f
 option tells it to expect a file as an argument. We passed it pfil
 e
 at runtime, which uses whitespace as a record separator. What would happen if we had passed it something like /etc/grou
 p
 instead?

/awkish /etc/group

Record and Fields of:

/etc/group

Num Recs: 88

Num Fields: 1

One field? Let’s use aw
 k
 and se
 d
 to get the first line out of that file so we can take a closer look.

awk 'NR==1 { print }' /etc/group

root:x:0:

sed -n '1p' /etc/group

root:x:0:

Human eyes would register at least 3 fields here (technically four – the last field is just empty). We’ve used -
 F
 to set the separator to a colon earlier; this time, let’s declare it in the BEGI
 N
 section of our aw
 k
 script.

BEGIN {
 FS=":"
 ;print "Record and Fields of:" }

We added
 FS=":";
 to the BEGI
 N
 section of our script. This sets the F
 ield S
 eparator to a colon. Running it again:

/awkish /etc/group

Record and Fields of:

/etc/group

Num Recs: 88

Num Fields: 4

As used above,
 F
 S
 and N
 R
 are built-in variables that aw
 k
 populates based on what it knows about a file. Here’s a short list of the more commonly used ones:

	
FILENAM
 E
 – the name of the input file; undefined in BEGIN block

	
 FS/RS
 – input field separator/record separator

	
OFS/OR
 S
 – output field separator/record separator

	
 NF
 – number of fields in current record

	
 NR
 – number of current record

	
 FNR
 – if multiple input files, record number of current file

	
 $0
 – entire current record

	
 $n
 – where
 n
 is a number; field by sequence e.g.
 $1,$2

Let’s reexamine a line from the body section of our aw
 k
 script.

{ if(NR == 1) { print FILENAME }; }

In the above example, the outer curly braces simply represent the BODY of the script and the semicolon ends the line. We may disregard them for the moment and break down the remainder:

if(
 condition
) {
 action
 };

This is a conditional statement. As a condition we used NR==
 1
 . N
 R
 is a variable which holds the current record number. The double equal signs =
 =
 are interpreted as “is equal to”. In other words, the statement reads: “if we are currently evaluating the first record of the file”
 . If the condition evaluates as true, the action portion of the statement is executed – otherwise, the program simply continues.

Our action was print FILENAME
 .
 When the script executed, the condition evaluated as TRUE, and the filename was printed exactly once – when we evaluated the first record.

Returning to our example:

#!/bin/gawk -f

BEGIN { print "Record and Fields of:" }

{ if(NR == 1) { print FILENAME }; }

END { print "\n""Num Recs:\t",NR,"\n""Num Fields:\t",NF }

Finally, The \
 n
 represents a newline, and the \
 t
 represents a horizontal tab. Simply put, it made the output prettier.

Consider this example, using echo instead of awk:

echo -e "hi \t there \n"

hi there

Module 7: Booting

Boot Sequence

The boot sequence of an EL7/8 system is:

	

UEFI
 or BIOS
 – firmware which checks the hardware, initializes it, and specifies (or in the case of UEFI without compatibility support detects
) the boot device. It will then load the bootstrap program from the either the Master Boot Record (BIOS or CSM) or a separate /boo
 t
 partition (UEFI).

	Most current implementations of UEFI run with the compatibility support module (CSM) enabled. This will end soon, as support for CSM/legacy BIOS ends in 2020.

	

Bootstrap

	

UEFI
 – will read from a special boot partition (either /boot/ef
 i
 or /efi/BOO
 T
). The file be named something like grubx64.ef
 i
 .

	The integrity of grubx64.ef
 i
 and of the kernel are validated using keys stored in a file called shim.ef
 i
 .

	

MBR
 – the first 512 bytes on the boot device; containing boot.img
 in the first 446 bytes, followed by four 16-byte Primary partition tables, and a two-byte magic number (
 xAA5
 5
).

	
boot.im
 g
 in turn loads core.img

	

core.im
 g
 is written in the empty space between the MBR and the first partition

	It loads configuration files, and other modules needed to boot such as filesystem drivers.

	
core.im
 g
 is generated during installation.

	The grub
 2
 process then starts.

	Additional or alternative images may also be loaded, for instance for network boot.

	

grub2 –
 the bootloader for EL7/8. It will read the appropriate grub.cf
 g
 and provide a text menu based on it to select an operating system. Typically grub
 2
 will then:

	Mount the filesystem in read-only mode

	Load the kernel from a compressed file (
 vmlinu
 z
)

	
Mount an initial read-write filesystem (the initramf
 s
) in RAM and load load an image (the initr
 d
) into it which will have the remainder of the necessary modules and instructions to load the actual run-time kernel for use.

	The image contents can be viewed using # lsinitrd

	
Mount the root filesystem in read-write mode, then start the kernel.

	At this point logging to the kernel ring buffer begins.

	These logs are viewable with # dmesg

	Much of this is done through a program called dracu
 t
 , which generates the initramf
 s
 . Any opotions you see beginning with rd
 .
 are options passed to dracu
 t
 .

	The kernel will then launch systemd

	
systemd
 – the first userspace process which initiates all other processes. It will examine all the unit files required or wanted by the destination target using a series of small executables called generators. Using the information from them it will build a dependency tree, and initialize all needed mounts, devices, services, and sockets in an appropriate order.

grub.cfg, grub2-mkconfig, grub2-setpassword

Grub will read either /boot/grub2/grub.cf
 g
 or /boot/efi/EFI/redhat/grub.cf
 g
 to determine what menu it should present and how it should boot. This file should not be edited directly. Any changes made to this file will be overwritten by other processes.

Instead changes should be made to /etc/default/gru
 b
 or to files in /etc/grub.d/

These changes then are exported to grub.cf
 g
 using

grub2-mkconfig -o /
 path
 /grub.cfg

Things you might change in /etc/default/gru
 b
 are:

	

GRUB_TIMEOU
 T
 – number of seconds before executing the default

	If set to 0
 there will be no grub menu.

	This can be overridden by pressing shif
 t
 .

	
GRUB_DISABLE_RECOVER
 Y
 – If set to
 "
 false
 "
 (notice the quotes), will show all available kernels and a rescue mode option for each.

	
GRUB_DISABLE_SUBMEN
 U
 – If set to
 fals
 e
 (notice no quotes), will collapse all non-default kernels into a sub-menu labeled
 Advanced Option
 s
 .

	
GRUB_CMDLINE_LINU
 X
 – specifies arguments passed to the kernel at boot.

	

GRUB_DEFAUL
 T
 – the default kernel entry.

	

It can be index number of a menu entry, a menu entry name, or the special string
 save
 d
 – which points to the variable
 saved_entr
 y
 .

	You can see all available menu entries with

grep ^menu grub.cfg

	You can view saved_entr
 y
 with

grub2-editenv list

	
You can change saved_entr
 y
 with

grub2-set-defaul
 t

	This can be the number of the menu entry (counting from 0)

	Or the name with double quotes around it.

	This alters the system generated file gruben
 v
 .

	
When you upgrade the kernel, the grubb
 y
 tool will create a new menu entry and update the value of saved_entr
 y
 .

	It will also automatically backup the old grub.cfg

Custom entries can also be placed in files in /etc/grub.d
 /
 . The files are processed in lexical alphabetic order. In case of a conflict, the option processed last wins. When you are done making changes, it is best to backup the old grub.cf
 g
 before running grub2-mkconfig

Another way to alter grub.cf
 g
 is with the use of grubb
 y
 . If grubb
 y
 is used, be aware any changes made will be overwritten the next time grub2-mkconfi
 g
 is invoked.

In addition to gru
 b
 menu configuration changes the boot process can be changed during boot. This is done by pressing e
 . This will allow you to edit the currently selected boot entry. Most edits will be done to the line which begins linux1
 6
 or linuxef
 i
 . To boot CTL-
 x
 . To return to the menu ES
 C
 . For a very limited command line CTL-
 c
 . These kernel command line changes can be made permanent using GRUB_CMDLINE_LINU
 X
 as above.

Common edits to the kernel command line are:

	
Remove:

	
rhg
 b
 – prevent Red Hat Graphical Boot, which hides boot messages

	
quie
 t
 – do not supress detailed boot messages

	
Add:

	
rescu
 e
 – mounts all filesystems, root login only, no networking.

	
emergenc
 y
 – mounts the root filesystem read only, minimal services

	
systemd.unit=
 some.targe
 t
 – define the target to boot to

	

rd.brea
 k
 – when
 dracut
 exits, drop to a shell.

	
This is similar to emergency mode but there is no need for a password as the 'real' kernel has not yet loaded.

	
selinux=
 0
 – do not load the SELinux kernel module, prevents SELinux from running at all. Should not be a default, for testing and maintainence only.

	
enforcing=
 0
 – set SELinux into permissive mode, it will log violations, but not prevent them. Should not be a default, for testing and maintainence only.

	
audit=
 1
 – turns on auditing for processes which begin before
 auditd
 initiates.

	
nosmt=forc
 e
 – disables simultaneous multithreading as a security measure against exploits such as L1TF and MDS

	
mitigations=aut
 o
 or auto,nosm
 t
 – further mitigations for L1TF and MDS

	
spectre_v2=retpolin
 e
 – mitigation for the Spectre vulnerability family

	
fips=
 1
 – require FIPS compliant encryption, should be set during installation

To prevent unauthorized alteration of the boot sequence you have two alternatives. You can set GRUB_TIMEOUT=
 0
 . Downside: no one, not even legitimate users, can alter the boot sequence. It is better (and required by STIG) to password protect the menu. Use

grub2-setpassword

The technique shown some documentation in which a password hash is manually inserted into a file is outdated and will not work. The grub password should not be the same as root's login password
 .

To restrict booting of a particular menu entry: Manually remove --unrestricte
 d
 from the menu entry in /boot/grub2/grub.cf
 g
 . This is the only time you should directly edit this file. The restriction will remain when new kernel versions are installed, but will be lost the next time you use grub2-mkconfi
 g
 . This will require use of the grub password to boot that entry.

To prevent unauthorized access, ensure that ownership of grub.cf
 g
 is root:roo
 t
 and permissions are set to 60
 0
 .

Recovering the root Password

If you have lost the root password you can recover it either using an installation disk, or by altering the boot sequence. To use the install disk:

	Choose Troubleshooting, Rescue a System, you will get a prompt (
 sh-4.2
 #
).

	The root partition will be the temporary RAM filesystem, not the real
 system root.

Fix this with # chroot /mnt/sysimag
 e
 .

	
You can now run
 # passwd roo
 t
 , or any perform any other needed repairs.

	
Because you changed files while SELinux wasn't looking, they need to have their security contexts restored.

	If you only reset a password, # restorecon /etc/shadow

	If you altered other files, you can run restoreco
 n
 against them as well.

	
If you aren't sure,
 # touch /.autorelabel

This will fix security context on all files in the filesystem on next reboot. It takes longer, but it's safer.

	
reboo
 t

To recover a lost password by altering the boot:

systemd

When grub launches the kernel (via dracu
 t
), it hands over control to system
 d
 . The first thing system
 d
 does is run systemd.generato
 r
 , a series of small programs which can dynamically create symlinks or unit files as appropriate. An example is the

systemd-fstab-generato
 r
 , which reads /etc/fsta
 b
 and creates appropriate .moun
 t
 units in a temporary filesystem.

It then reads /etc/systemd/system/default.targe
 t
 , which is a symlink to a .targe
 t
 unit file. The target specifies which services to start at boot.

	The default target can be set with # systemctl set-defaul
 t
 some.target

	It can be over-ridden with systemd.unit
 =
 passed as a kernel command line option

	
The targets are roughly equivalent to the classic SystemV init-based runlevels and are aliased to them for backwards compatibility.

	Switch running targets by issuing # systemctl isolate
 dest.target

	
runlevel
 and telini
 t
 will work, but are not recommended.

Valid targets for isolation or default are:

	
emergenc
 y
 – Bypasses all other services.

Equivalent to passing
 emergenc
 y
 on the kernel command line

	
rescu
 e
 – The same as passing
 rescu
 e
 . Aliased as runlevel 1.

	
multiuse
 r
 – Text based, all services. Aliased as runlevels 2, 3 & 4.

	
graphica
 l
 – Multi-user plus the pretty stuff. Aliased as runlevel 5.

	
hal
 t
 – Stop the system, but don't power off.

	
powerof
 f
 – Full shutdown. Aliased as runlevel 0.

	

reboo
 t
 – Restart the system. Aliased as runlevel 6.

	
Can also be invoked by CTL-ALT-DE
 L
 , this should be disabled

	
systemctl mask --now ctrl-alt-del.service

	
systemctl mask --now ctrl-alt-del.target

	On GUI systems additional steps are needed to prevent user-induced reboot

	
system-updat
 e
 –
 Used for offline installation of software that may otherwise conflict with a running system. See the man page for
 systemd.offline-updates

	
kexe
 c
 – used to boot to another kernel, usually not run by a user.

There are also lots of special targets, which are not destinations, but instead are waypoints between destinations. A listing can be found in the man page for systemd.specia
 l
 .

After reading the target's unit file and running the generators system
 d
 then builds a dependency tree like this:

local-fs-pre.target

|

v

(various mounts and (various swap (various cryptsetup

fsck services...) devices...) devices...) (various low-level (various low-level

| | | services: udevd, API VFS mounts:

v v v tmpfiles, random mqueue, configfs,

local-fs.target swap.target cryptsetup.target seed, sysctl, ...) debugfs, ...)

| | | | |

__________________|_________________ | ___________________|____________________/

\|/

v

sysinit.target

|

____________________________________/|__

/ | | | \

| | | | |

v v | v v

(various (various | (various rescue.service

timers...) paths...) | sockets...) |

| | | | v

v v | v
 rescue.target

timers.target paths.target | sockets.target

| | | |

v _________________ | ___________________/

\|/

v

basic.target

|

____________________________________/| emergency.service

/ | | |

| | | v

v v v
 emergency.target

display- (various system (various system

manager.service services services)

| required for |

| graphical UIs) v

| |
 multi-user.target

| | |

_________________ | _________________/

\|/

v

graphical.target
 (from https://www.freedesktop.org/software/systemd/man/bootup.html)

It builds this tree by analyzing the dependencies as configured in the unit files. There are several ways to visualize the dependency tree:

	
systemd-analyze critical-chai
 n
 – also shows start time information

	
systemd-cgl
 s
 – shows all scopes and slices, but not targets

	

systemctl list-dependencie
 s
 – shows dependencies for a service

	
--revers
 e
 – shows what depends on a service

	
--befor
 e
 / --afte
 r
 – shows order of units

	
systemctl sho
 w
 – allows reading of the dependencies manually

systemctl

The systemct
 l
 command has already been mentioned, and will be brought up again in multiple places. It is used to examine and control system
 d
 and the service manager. Here are a few of the more common verbs for controlling services:

	
statu
 s
 – shows general status and state

	
sho
 w
 – lists all properties

	
list-unit
 s
 – show units in memory

	
start/stop/restar
 t
 – control the running state

	
reloa
 d
 – force the service to re-read configuration files (.conf, not unit files)

	
daemon-reloa
 d
 – re-read unit files and re-run the systemd generator for dependencies

	

enable/disabl
 e
 – turn on/off service auto-start

	
enable --no
 w
 – equivalent to enabl
 e
 and start

	
mask/unmas
 k
 – completely prevent a service from starting

	
is-enable
 d
 – query enable status

	
verif
 y
 – check syntax on unit files

	
ca
 t
 – print assembled unit files for a service

	
isolat
 e
 – change running state to a designated target (
 multi-use
 r
 , graphica
 l
)

	
get-defaul
 t
 / set-defaul
 t
 – control default target

	
hal
 t
 / reboo
 t
 / powerof
 f
 – control power state

To limit the results of systemct
 l
 you can use:

	
--type=
 service, socket ,target, device, mount, automount, swap, timer, path, slice, scope

	

--state=
 active, inactive, failed, dead, running

	more can be found with --state=help

Unit Files

Unit files are the way we configure almost everything that system
 d
 touches. Many command line tools that involve anything controlled by system
 d
 will generate or alter unit files on the fly. Enabling and disabling services does nothing more than create a symlink to a unit file in a directory that system
 d
 will read when loading (on boot or when triggered with

daemon-reloa
 d
). Masking a service creates a link from that unit file’s name to /dev/nul
 l
 , preventing it from ever running.

Unit files have a standard syntax common to all unit types, as well as specialized syntax for different unit types. The man pages are the best reference. For the generic unit configuration consult the man pages for systemd.uni
 t
 and systemd.resource-contro
 l
 . To see a list of man pages for the specialized unit types

man -k systemd | grep "unit configuration"

The [Unit
]
 portion is required for all unit files. Among other things, it can contain:

	
Description
 =
 The program description, mandatory.

	
Documentation
 =
 URL/URI for documentation.

	
Requires
 =
 Other units that must be started with this unit. This unit will be deactivated if required units fail or gets deactivated.

	

Wants
 =
 Other units that will be started with this unit. Softer than
 Requires
 =
 , this unit will not fail if the wanted units fail.

	If a servicename
 .wants
 /
 or servicename
 .requires
 /
 directory exists, symlinks to other unit files can be placed here. They will be treated as though those units were listed in the Wants
 =
 or Requires
 =
 line.

	

Before
 =
 and
 After
 =
 Used to modify the start order of
 Wante
 d
 or
 Require
 d
 units. Refers to
 this unit's
 relation to the ones listed:

	
Before
 =
 means that this unit will start before those listed.

	
After
 =
 wait for the named unit to fully start before attempting to run this unit.

	
Conflicts
 =
 Units that cannot run with this unit. Starting one of these will stop this unit, and vice-versa.

	
AllowIsolate=tru
 e
 Allows the use of
 #
 systemctl isolate
 targe
 t
 ; a method to switch between destination targets. This will conflict all units which are not required by the named target and then start it.

Unit files may optionally have an [Install]
 section which can contain:

	
Alias
 =
 An alternate name;
 syslog.service
 is an alias for
 rsyslog.service

	

WantedBy
 =
 /
 RequiredBy
 =
 Allows a unit file to be enabled and tells
 systemctl enable
 which directory to create symlinks to.

	
Some units do not have a
 WantedBy
 or
 RequiredBy
 and cannot be enabled. Instead they are triggered by other unit file types which wait for an event such as
 .socke
 t
 or
 .time
 r
 .

	
Also
 =
 Units which will be installed when this unit is enabled.

Some units can be used to trigger other unit files (typically a .servic
 e
) or perform an action when a condition is met. Unit types which can be used as triggers include:

	
.automoun
 t
 – mounts a file system when a directory is accessed

	
.pat
 h
 – executes a service when the contents of a directory is changed

	
.time
 r
 – executes another unit at a given time

	
.socke
 t
 – starts a service when a network connection to it is made

Settings from unit files stored in /etc/systemd/syste
 m
 will override settings in any other location, such as /usr/lib/systemd/syste
 m
 . Therefore, that is where you usually should make your changes.

The validity of a unit file can be checked with

systemd-analyze verify
 name.service

If there are no errors it will not produce an output. If it is valid, run

systemctl daemon-reloa
 d

This makes system
 d
 re-read all unit files and regenerate the dependency tree. Relevant services may also need to be restarted.

Shutdown is nothing more than isolatio
 n
 to another target. The commands shutdow
 n
 , reboo
 t
 , and hal
 t
 are wrappers for this. The dependency tree for shutdown is this:

(conflicts with (conflicts with

all system all filesystem

services) mounts, swaps,

| cryptsetup

| devices, ...)

| |

v v

shutdown.target umount.target

| |

_______ ______/

-------\ /------

v

(various low-level

services)

|

v

final.target

|

-------------------------------------/ \---------------------------------

/ | | \

| | | |

v v v v

systemd-reboot.service systemd-poweroff.service systemd-halt.service systemd-kexec.service

| | | |

v v v v

reboot.target

 poweroff.target

 halt.target

 kexec.target

(from https://www.freedesktop.org/software/systemd/man/bootup.html)

Module 8: Processes and Services

When you boot an EL system the BIOS or EFI locates the boot device and begins reading it, the bootloader (
 grub
 2
) loads the Linux kernel and mounts the root filesystem read-only, finally the kernel takes the command line arguments passed to it by gru
 b
 and starts system
 d
 .

This is the first process and is ultimately responsible for the initiation of all further processes, from remounting the root filesystem as a read-write device, and configuring networking, to providing a bas
 h
 prompt for you to log in to. The kernel does not really count as a process. Rather it sits below all other running processes and controls the hardware, taking requests from the user-space programs in the form of system calls and returning the results.

Every process is assigned a Process ID (
 PI
 D
), a unique number that the kernel uses to track processes. As the first process, systemd
 will receive PID
 1
 . In most earlier versions of Unix-like systems this role was taken by the process ini
 t
 . Beginning with the release of EL7 in 2014 system
 d
 has been the only available initialization process. Some members of the EL family (such as Fedora) adopted it as early as 2011. Most other major distributions including Debian and Ubuntu have also adopted it. We will address system
 d
 later, first we need to look at the processes that come after system
 d
 , and how to control them.

ps, pgrep, kill, pkill, killall

Before you can control processes, you must first identify them. The most direct way to find processes running on a system is with p
 s
 . Common invocations include:

	
ps -e
 f
 – everything, full listing

	
ps -u
 usernam
 e
 – display only processes from a user

	

ps -eo pid,user,pmem,args --sort pme
 m
 – everything, with column selection and sorting

	Column keywords can be found under STANDARD FORMAT SPECIFIER
 S
 in the man page for ps

Long ago there was a divergence from the UNIX/POSIX standard by the BSD group. While you can use the BSD style switches (most commonly au
 x
 or -au
 x
 as an equivalent to -e
 f
), use of the POSIX standard switches is encouraged.

Another handy way to find processes is by the use of pgre
 p
 . For instance, if you want to find the PIDs of ss
 h
 processes being run by a user: # pgrep -u
 username
 ss
 h
 . If you also want to see the command line that invoked it add -
 a
 . To see the newest process (other than pgre
 p
) currently running # pgrep -n
 a
 .

Processes are controlled by sending them signals. There are 64 signals defined in EL, each defined by a number and a short ALL CAPS word. The important ones from a system administrator's viewpoint are:

	
1 HU
 P
 – Reread your configuration file and restart

	

2 IN
 T
 – End, gracefully if possible

	Sent by CTL-
 c

	Cannot be ignored

	

3 QUI
 T
 – End now, provide a core dump if possible

	Sent by CTL-\

	

15 TER
 M
 – End, gracefully

	Can be ignored

	

9 KIL
 L
 – End now

	Cannot be ignored

	
19 STO
 P
 – Pause

	

20 ST
 P
 – Pause

	Can be ignored

	Sent by CTL-z

	

18 CON
 T
 – Resume

	Sent by fg
 and b
 g
 discussed in the next section

Signals can be sent with the kil
 l
 command. The common invocation is # kill -9
 PID

You can also use pkil
 l
 or killal
 l
 to signal multiple processes.

	
pkill -9
 processname

	
pkill -9 -u
 username

	
killall -9
 processnam
 e

	
killall -9 -i -u
 usernam
 e

Before you use any of these tools be aware that you can (and likely will) destroy stuff along the way. Terminating the wrong process can forcefully log you out or completely lock a computer. Some things to be aware of:

	

kill

	If PI
 D
 is 0
 , all processes in the current group are signaled, including your login

	
If
 PI
 D
 is
 -1
 is all processes other than
 systemd
 are signaled

	

pkill

	uses -
 v
 for invert, like pgrep

pkill -9 -v slee
 p
 will kill every process not named sleep

	

killal
 l

	uses -
 v
 for verbose mode, unlike
 pkil
 l
 /
 pgrep

	has -
 i
 for interactive, it will ask you before killing things

jobs, bg, fg, disown

Thus far all the processes you have started have been issued from the command line and have run in the foreground while you watched. This is not always what you want to do though. You may not want to give up your bash prompt for half an hour while logs are compressed and moved. To start a command in the background put an ampersand at the end of the line:

tar -cvf /lotsostuff/* tarball.tgz
 &

You also have some options to control a job after you have started it in the foreground. You can suspend a job with CTL-
 z
 . You can get a list of all stopped and backgrounded jobs with

jobs

[2] Running sleep 99999 &

[3]+ Stopped vi

[4]- Stopped man man

To bring a job to the foreground, type f
 g
 and the job number. To resume the job in the background, b
 g
 and the job number. If you issue fg
 or bg
 with no number the command will be applied to the job with the plus sign; the minus indicates the job which will be assigned the plus sign next.

All job manipulation is shell specific. You cannot b
 g
 a job in one terminal and f
 g
 it in another. If you log out, any stopped or backgrounded jobs are lost. To prevent this, you must

disown -
 h
 job-number
 or # disown -ha
 (all jobs)

top, uptime, free, vmstat

You can also view and control running processes using to
 p
 . This displays a header bar summarizing the state of the system:

top - 08:36:00 up 17:53, 2 users, load average: 3.21, 0.76, 0.31

Tasks: 163 total, 12 running, 150 sleeping, 1 stopped, 0 zombie

%Cpu(s):100.0 us, 0.0 sy, 0.0 ni, 0.0 id,0.0 wa,0.0 hi,0.0 si, 0.0 st

KiB Mem:2916168 total, 2053344 free, 384916 used, 477908 buff/cache

KiB Swap: 3776504 total, 3776504 free, 0 used. 2290980 avail Mem

The first line displays the current time, u
 p
 time since last boot, number of logged in user
 s
 , and load averag
 e
 – the number of processes waiting in the cpu queue over the last 1, 5, and 15 minutes. This line is also displayed by w
 and uptim
 e
 .

The Task
 s
 line shows the number of processes: tota
 l
 , runnin
 g
 , sleepin
 g
 (waiting for something to happen), stoppe
 d
 (via CTL-
 z
 or a STO
 P
 signal), and zombie
 s
 (those that have terminated, but not fully exited).

The Cp
 u
 display can be switched between cumulative and per cpu statistics by pressing 1
 . The numbers on the Cp
 u
 line are:

	
u
 s
 er – all programs that don't belong to the kernel

	
s
 y
 stem – kernel programs, such as networking or I/O operations

	
n
 i
 ce – time spent running programs that have been niced

	
i
 d
 le – time spent doing nothing

	
w
 a
 it – time spent waiting for the outside world such as I/O

	
h
 i
 & s
 i
 – time spent servicing hard and soft interrupts

	
s
 t
 olen – only seen on virtual machines hosted on Linux. This is the time spent waiting for cpu because another VM was using it.

The Me
 m
 ory and Swa
 p
 lines should be self-explanatory, with the exception of buff/cach
 e
 – which is the amount of memory used by the kernel in pre-read buffers and write caches.

This information can also be obtained in a more readable format with #
 free -
 h
 ; and in a less readable format, with more detail using #
 vmsta
 t
 .

Below the header is a list of processes:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

649 root 20 0 228920 6228 4632 S 0.3 0.2 0:41.06 vmtoolsd

	
PID, USER, COMMAN
 D
 – the PID, user who issued the command and the command name.

	
PR & N
 I
 – The scheduling priority and niceness value

	
VIR
 T
 – Virtual image: the total memory size of the process, including all shared libraries, pages swapped out to disk, and pages allocated, but not used.

	
RE
 S
 – Resident memory: the actual physical memory in use.

	
SH
 R
 – Shared memory: or at least potentially shared memory (such as libraries).

	
S
 – Status: R
 unning, S
 leeping, s
 T
 opped, Z
 ombie, D
 ead (uninterruptible sleep).

	
%CPU, %MEM, TIME
 +
 – Percentages of cpu and memory, as well as total cpu time taken. Note that %CP
 U
 is based on one core and may exceed 100% in a multicore system.

There are a number of commands that can be issued within to
 p
 . Useful ones include:

	
h
 – Display a help screen

	
d
 – set update interval in seconds

	
i
 – toggle idle processes

	
n
 – Change the number of processes displayed.

	
f
 – Select fields to display

	
M
 – Sort by memory usage.

	
P
 – Sort by CPU usage.

	
T
 – Sort by cpu time.

	
R
 – Reverse sort order

	
<
 >
 – navigate

	
V
 – Show parent process relationships

	
c
 – show full command line

	
u
 – Filter by user.

	

o
 – Add filters, for example:

	
%CPU>0.
 1

	
!USER=roo
 t

	
COMMAND=httpd

	
CTL-
 o
 – Display filters

	
=
 – Clear filters

	
L
 – locate string

	
r
 – Renice a process

	
k
 – Send a signal / kill a process

	
W
 —Save current configuration to ~/.topr
 c

If you wish to use a more modern version of to
 p
 , hto
 p
 is available in the EPEL.

nice, renice, ionice, taskset

There are several different ways to limit and prioritize resource usage, the simplest is based on cpu priority. Priority is controlled by the niceness value. This can be found with

ps -eo nice,pid,user,com
 m

Niceness is an integer from -2
 0
 to 1
 9
 , with lower numbers being higher in priority (less nice). A process started from the command line has a default niceness of 0
 . To start a command with a different value, use nic
 e
 . If you simply issue # nice
 comman
 d
 , that command will be started with a niceness of 1
 0
 . Use -
 n
 to set a different value.

Once a command is running its niceness can be adjusted using

renice
 PI
 D

This can be done for all processes owned by a user # renice -n -10 -u
 usernam
 e
 .

You can renice groups of processes using either command expansion or xarg
 s
 :

renice -n +15 $(pgrep chrome)

 or

pgrep bc | xargs renice -n -15

Processes also have a scheduling priority for disk access. This can be viewed and controlled using ionic
 e
 , which allows scheduling in classes of realtim
 e
 , best-effor
 t
 , or idl
 e
 time only.

A given process can be assigned to run on a specified processor or processor set. This is known as processor affinity and while not often done, it can have large performance benefits. In EL processor affinity is set using taskse
 t
 .

cgroups: slices, scopes, services

You can also control resource utilization using control groups, known as cgroups
 . EL7/8 uses system
 d
 to create a series of slice
 s
 , which can contain sub-slice
 s
 , scope
 s
 , and service
 s
 . A scope
 is a group of externally created processes such as a user session or a virtual machine. A servic
 e
 is a group of processes started by system
 d
 based on a unit file. Each of these is a cgroup that can be individually regulated regarding memory, i/o, and cpu usage.

Slices are arranged hierarchically beginning at -.slic
 e
 , where system
 d
 lives. Below -.slic
 e
 are a system.slic
 e
 , the default for services; a user.slic
 e
 , where user sessions exist, and a machine.slic
 e
 where VMs and containers are run.

Additional slices, scopes, and services can be created either transiently or permanently. To see all active cgroup
 s
 and the processes contained within them:

#
 systemd-cgls

├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 21

├─user.slice

│ ├─user-0.slice

│ │ ├─session-158.scope

│ │ │ ├─9329 sshd: root@pts/2

│ │ │ ├─9334 -bash

│ │ │ ├─9502 systemd-cgls

│ │ │ └─9503 less

│ │ ├─session-157.scope

│ │ │ ├─9255 sshd: root@pts/1

│ │ │ ├─9260 -bash

│ │ │ ├─9470 man systemd-system.conf

│ │ │ └─9475 less -s

============================ >SNIPPED HERE< ========================

└─system.slice

├─udisks2.service

│ └─2642 /usr/lib/udisks2/udisksd --no-debug

├─wpa_supplicant.service

│ └─2588 /usr/sbin/wpa_supplicant -u -f /var/log/wpa_supplicant.log

├─packagekit.service

│ └─2587 /usr/libexec/packagekitd

Here you can see the -.slic
 e
 , the user.slic
 e
 , and a sub-slice for user-
 0
 (root). Below user-0.slic
 e
 are two scopes, each representing a separate login session. Below the snip line you can see the beginning of the system.slic
 e
 with several services contained within it.

You can list existing cgroups by type using

systemctl -t
 type
 where typ
 e
 is slic
 e
 , scop
 e
 , or servic
 e
 .

Each of these steps in the hierarchy: slices, scopes, and services is a control group and is represented by a unit file (or files). Unit files can be stored in several different directories, these are evaluated in this order with the final setting being the one applied:

	Permanent files created or controlled by the system /usr/lib/systemd/system/

	
Temporary files created on the fly by the systemd generator /run/systemd/transient

	Additional files may be created in /sys/fs/cgrou
 p
 and /run/systemd/system

	Permanent files created by users /etc/systemd/system/

Additional files may be placed in separate .
 d
 directories which override the base unit file. Thus anything placed in /usr/lib/systemd/system/httpd.service.d
 /
 will override the httpd.servic
 e
 unit. In EL8 a full list of paths used by systemd can be found with

systemd-analyze unit-paths

Overridden configuration files can be found with

#
 systemd-delta

Any unit can be individually configured for resource control by editing the proper unit file. Resource controls are inherited from parent to child. This means that a child process will not exceed the limits placed on a parent, unless explicitly overridden in the child’s unit file.

Controls are measured in different ways:

	
Absolute values
 – MemoryHigh=1
 G
 sets a hard 1G limit.

	
Relative to available resources
 – Setting CPUQuota=150
 %
 and MemoryHigh=33
 %
 will restrict a group to 1½ cpu core's worth of compute and ⅓ of installed memory.

	
Relative to each other
 – If there are three cgroups with the first having CPUWeight=20
 0
 , the second [Not Set
]
 (default is 10
 0
), and the third with CPUWeight=5
 0
 ; they will get cpu in the ration of 4:2:1 respectively.

The controls available and their names have been rapidly evolving and are different from EL7 to EL8, and even vary between minor versions. For instance CPUWeigh
 t
 mentioned above is EL8 specific, replacing CPUShare
 s
 from EL7. Before configuring, consult the man page for systemd.resource-contro
 l
 for your specific version. It should also be noted that IPAddressAllo
 w
 and IPAddressDen
 y
 do not work in EL8 at this time.

To demonstrate this we will create a default control set for all users, a less restrictive one for roo
 t
 (
 UID
 0
), and a more restrictive one for the user bo
 b
 , who has a UI
 D
 of 100
 5
 .

For these controls to be effective, the user must execute a true login. If # su
 -
 is used the secondary bas
 h
 session will be a part of the original parent cgroup and will inherit the settings appropriately.

Create /etc/systemd/system/user-.slice.d/defaults.con
 f

[Unit]

Description=User Slice of UID %j

After=systemd-user-sessions.service

[Slice]

TasksMax=2000

MemoryMax=1G

CPUQuota=100%

For roo
 t
 create /etc/systemd/system/user-0.slice.d/defaults.conf

[Slice]

TasksMax=infinity

MemoryHigh=1G

CPUQuota=200%

For bo
 b
 create /etc/systemd/system/user-1005.slice.d/defaults.con
 f

[Slice]

TasksMax=200

MemoryHigh=250M

CPUQuota=50%

There are several tools for viewing information about running cgroups:

	
ps -o args,cgroup | less
 – current cgrou
 p
 information

	
systemctl show user-
 UID
 .slic
 e
 – effective options on the current slice

	
systemd-cgto
 p
 – resource usage by slice, h
 for help

New control groups can also be generated by systemd-ru
 n
 , and copied. To do this:

systemd-run --unit=
 tempname
 [--scope][--slice=
 slice-name
] \ /
 path
 /
 command –options
 &

scop
 e
 and slic
 e
 are mutually exclusive. If given a unique slic
 e
 name, a new slice will be created and the service run there. If given scop
 e
 it will run in the current slice, typically user.slic
 e
 . If neither are specified, it will run under system.slic
 e
 .

The command to be run can be anything executable. However it will need to be labeled as a binary (
 bin_
 t
) by SELinux. The easiest way to achieve this is by placing it in a binary directory such as /usr/sbin
 /
 .

This creates a transient service, scope, or slice with unit files stored in /run/systemd
 /
 and associated .
 d
 directories.

You can tune the running properties of the service using like this:

systemctl set-property
 tempname
 .service MemoryLimit=10K

To make the service persistent, you will need to create a unit file. An easy way to accomplish this is to copy the transient file set to a permanent location:

systemctl cat
 tempname
 .
 service
 > /etc/systemd/system/
 name
 .
 service

Use a destination service name which is different from the running name, otherwise you will have a conflict later. Ensure that the file has permission and ownership of 644 root:root

It is good practice to then clean up the file, add dependencies(
 Want
 s
 , WantedB
 y
), enable the service if appropriate, associate it with targets, etc. For the moment it is enough to add:

 [Install]

 WantedBy=multiuser.target

at the bottom of the just created file. This allows us to then systemctl enable
 the service, ensuring it will start on reboot.

After a permanent unit is created, limits can be placed on it by manually editing the unit file.

[Unit]

Description=/root/splat

[Service]

ExecStart=

ExecStart=@/root/splat "/root/splat"

CPUQuota=25% ###### Line added here#####

Slice=spatter.slice

After making changes, the unit must be reloaded with:

systemctl daemon-reload
 name &&
 # systemctl restart
 name

limits.conf, ulimit

An older, but still valid way to limit the resource usage of a given user or group is to use the file /etc/security/limits.con
 f
 . It takes these columns:

	
<domain
 >
 user, group (preceded by @
), or *
 for default

	
<type
 >
 hard – never to be exceeded or soft – adjustable by the user up to a hard limit

	

<item
 >
 what we are limiting, options include:

	
fsiz
 e
 – maximum filesize (KB)

	
maxlogin
 s
 – maximum number of concurrent logins

	
memloc
 k
 – max locked-in-memory address space (KB)

	
nofil
 e
 – max number of open files

	
cp
 u
 – max CPU time (Minutes)

	
npro
 c
 – max number of processes

	
a
 s
 – address space limit (KB)

	
priorit
 y
 – the priority to run user process with

	
nic
 e
 – max nice priority [-20, 19]

	
<value>

There is one important security setting to be configured here. To reduce the potential impact of Denial of Service attacks, concurrent logins per user should be restricted to 10 or fewer:

 * hard maxlogins 10

Limits can be adjusted on the fly using the bas
 h
 built-in ulimi
 t
 . If you impose default limits using limits.con
 f
 , it is recommended that ulimit -u unlimite
 d
 be added to root's .bashr
 c
 .

Module 9: Filesystems

Filesystems organize, structure, and account for files on a device. A device in this case could be a disk, a partition, a logical volume, or any number of other data-holding things. Though there is tremendous variation in the way that filesystems treat data, most modern filesystems share some common concepts. Blocks
 are the smallest chunk of space that a filesystem can track. Each block will have a unique number assigned to it by the filesystem. All data written to a filesystem is stored in one or more of these blocks. The main types of blocks are:

	
Superblocks
 – a special type of block that contains information about the filesystem itself (filesystem type, size, available inodes, free space). When utilities like mkfs.ext
 4
 write the filesystem structure to a device, the superblock will be created in one of the first blocks in that space. Backup copies of the superblock may be created later, and spread throughout the addressable space as data is written into the filesystem.

	
Inodes
 – also stored in a special space (where depends on the filesystem; ext4 stores them at the beginning of each block group, xfs dynamically allocates them offset from the beginning of an allocation group). Inodes do most of the heavy lifting in filesystems, and contain metadata about file characteristics and pointers to the blocks holding the data of files.

	
Directory blocks
 – provide a way to associate file names with inodes. An entry could be as simple as: 27199300 fil
 e
 . In this case, the inode number 2719930
 0
 is associated with the filename fil
 e
 .

	
Data blocks
 – where data is stored. For example, if a user created a small text file, the data blocks would hold the text entered into the file by the user. Everything else, including the name of the file, would be metadata. Data blocks can be either direct or indirect, meaning that data is either stored directly in the block, or indirectly at other blocks via pointers.

Inodes

Inodes are integral to filesystem function. Each inode will contain information about a file or directory (including permissions, timestamps, and size. This information is metadata: data about
 data. Interestingly, inodes do not
 contain a file’s name. To understand why, we must briefly explore how files are retrieved when a user requests them:

ls -i /test

18073930 file

18073930 link

Here, we executed l
 s
 with the -
 i
 option, which lists the inode number associated with a directory entry. Let’s examine the entry for a file called file
 .
 The number 1807393
 0
 is the index number of the inode associated with that filename. Earlier, we discussed pathing. The absolute path to fil
 e
 is /test/fil
 e
 . The first directory listed in this path is slash /
 . This is followed by the tes
 t
 directory, and finally by fil
 e
 . If we display the contents of fil
 e
 using ca
 t
 the system has to begin at slash /
 and proceed from there.

cat /test/file

These are the contents of file
 .

Ordinarily, to find the inode of a given file, a directory listing would be consulted (as we saw at the beginning of this section). The root directory, however, is at the top of the hierarchy. No directory exists that contains an entry for it. There is no procedural way to deduce the location of root directory’s inode. Because of this, the inode for the root directory will always exist at a known location.

On older filesystems, this was traditionally inode 2
 . On a typical EL7/8 deployment the root filesystem is built on a logical volume and formatted with XFS. The root inode here is 12
 8
 , which can be determined by examining the superblock of the filesystem using xfs_d
 b
 ,
 is a utility most often used to examine the superblock of an XFS filesystem. It can also make changes, though this is usually done though the xfs_admin
 command (which will call xfs_d
 b
 as needed). Here, we use xfs_db -
 r
 to open a mounted filesystem read-only, s
 b
 to set the superblock at AG 0 as our target, and prin
 t
 to print out the contents for examiniation:

xfs_db -r /dev/mapper/cl-root

xfs_db>
 sb

xfs_db>
 print

<truncated>

uuid = c2580007-023f-413e-b8f2-56c867511429

logstart = 2097158

rootino =
 128

We can use sta
 t
 to retrieve information about a file or directory (directories are technically also files, with special rules for handling):

stat /

 File: /

 Size: 4096 Blocks: 8 IO Block: 4096
 directory

Device: fd00h/64768d Inode:
 128
 Links: 19

Access: (0555/dr-xr-xr-x) Uid: (0/ root) Gid: (0/ root)

Context: system_u:object_r:root_t:s0

Access: 2019-10-23 09:04:15.085292434 -0500

Modify: 2019-10-23 09:04:00.745180318 -0500

Change: 2019-10-23 09:04:00.745180318 -0500

Birth: -

Here we can see that this file is named /
 and that it is a directory. We can see the size, inode number, permissions, ownership, and a few other interesting details.

To retrieve /test/fil
 e
 using ca
 t
 , the system first retrieved the inode for the root directory. Then it checked the permission string to see if the invoking user has access to the directory. In this case, read and execute permissions were allowed. The next item in the requested path was tes
 t
 , another directory.

To find the inode for tes
 t
 , the contents of /
 were examined:

ls -di /test

18073928 test

From here the process is repeated: check access, consult directories, find inode, retrieve contents. Ultimately, we arrived at the final item in our path: fil
 e
 .

ls –i file

27199300 file

A final access check was performed. It succeeded. The inode pointed the way to the data blocks for fil
 e
 , the data was retrieved, and the requested functions were performed against it. In our case, we simply wanted the contents listed to STDOU
 T
 . ca
 t
 performed this function, resulting in the following:

cat file

These are the contents of file.

Throughout our traversal of the filesystem, only one piece of information could be considered data. It is this sentence:

These are the contents of file.

Everything else along the way was metadata, including the directories and even the file name.

ln

To understand links, it may help to begin with the idea that files don't have names - at least not as we classically understand them.

Instead, they have locations (data blocks, pointed to by inodes), and labels by which their inodes can be referenced. These labels provide the same function as a name, but in reality, they are simply a mechanism for resolving down to an inode number.

Files exist
 at a location, and will continue to do so no matter what they may be called, or by how many names they are known
 .

Consider the following:

ls –li file

total 4

18073930
 -rw-r--r--.
 1
 root root 81 Oct 23 09:11 file

The inode number: 1807393
 0
 contains the contents of fil
 e
 . The number 1
 after the permission string is the link count, which is the number of directory entries pointing to that inode. In this case, that entry was file.

ln file link

ls –li

total 8

18073930
 -rw-r--r--.
 2
 root root 124 Oct 23 09:11 file

18073930
 -rw-r--r--.
 2
 root root 124 Oct 23 09:11 link

Above, we used the l
 n
 command to create a hard link from fil
 e
 to lin
 k
 . The directory listing indicates that two entries now exist in the directory. The inode numbers are the same for both files
 . We appear to have two files, but the information for each is identical. Only the filenames differ. Notice also that the link count for each is now 2.

fil
 e
 and lin
 k
 are in fact the same file, referenced by different names. Modifying one has the apparent effect of modifying the other as well.

Deleting one, however, will not cause the other to disappear. Instead, the link count will simply decrement by one and the directory entry for the deleted “file” will disappear. When link count reaches zero, a file is effectively destroyed.

rm file

ls –li

total 4

18073930
 -rw-r--r--. 2
 root root 124 Oct 23 09:11 link

cat link

These are the contents of file.

After removing the "original" file, fil
 e
 , the listing shows only lin
 k
 , with a link count of 1
 . The ca
 t
 command was then invoked to display the contents of lin
 k
 returning this:

These are the contents of file
 .

Hard links do not create new files. Instead, they create additional directory listings for existing files. Hard links are useful, but they have limitations. Foremost amongst these is that they may not cross filesystem boundaries. We would not expect inode 10
 3
 in filesystem /tm
 p
 to contain the contents of inode 10
 3
 in filesystem /va
 r
 . This is because inode numbers are unique to each filesystem and are used by a filesystem to keep track of its own contents, not the contents of other systems.

To reference the contents of an inode on another filesystem through a link, we use a symbolic link. Symbolic links are files whose contents consist only of a pointer to some other file.

We can create one in this fashion:

ln -s
 /path/original-file /path/created-link

Let’s use this to "recreate" fil
 e
 from the last section:

ln -s /test/link /test/file

ls -li

total 4

18073932
 lrwxrwxrwx. 1 root root 19 Oct 23 09:20 file -> /test/link

18073930
 -rw-r--r--. 1 root root 124 Oct 23 09:11 link

This creates a symbolic link called fil
 e
 which points to lin
 k
 . The string

file -> /test/lin
 k
 indicates that fil
 e
 , when referenced, will attempt to return /test/lin
 k
 instead.

Notice that the inode numbers are different. Unlike hard links, symbolic links do not refer to an inode directly. They must not
 ; if they did, they could not cross filesystem boundaries. For this reason, a new inode is created, but only contains a pointer (via a simple path) to resources elsewhere on the system.

One interesting consequence of this behavior is that, should we now choose to delete lin
 k
 , fil
 e
 will still exist (it is tracked by a separate inode). Attempts to read the contents of fil
 e
 would fail, returning an error: No such file or directory

If we were to then create another file called lin
 k
 and store it in the same location as the original, the link would again function - though it would now point to an entirely different file.

parted, mkfs

To create a filesystem, a device must exist onto which the filesystem may be placed. Although certain types of filesystems may exist purely in RAM, we will focus on disk-based implementations.

Preparing a device

To see a list of available hard disks, we could use lsbl
 k
 :

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 16G 0 disk

├─sda1 8:1 0 1G 0 part /boot

└─sda2 8:2 0 15G 0 part

 ├─cl-root 253:0 0 10G 0 lvm /

<truncated>

 └─cl-home 253:5 0 1G 0 lvm /home

sdb 8:16 0 10G 0 disk

In the output above, we can see a listing for two hard drives and their partitions. These are: sd
 a
 with two partitions sda
 1
 and sda
 2
 , and sd
 b
 currently with no partitions.

In Enterprise Linux device files are in /dev
 /
 and follow one of two general naming conventions. For devices that are not partitioned, floppies (
 f
 d
) and optical media (
 s
 r
), two letters and a number, counting from 0
 . So the first CD/DVD drive is sr
 0
 . For IDE (
 h
 d
) and SCSI (
 s
 d
) drives, the convention is two letters for type, a letter for order (
 a
 =1, b
 =2...), and a number for partition, counting from 1. So the third partition on the second SCSI drive is sdb
 3
 . USB and flash drives will typically appear as SCSI devices. In cases of more than 26 devices, the ordinal letters double (
 z
 =26, a
 a
 =27...).

According to the output of lsbl
 k
 , the second drive, sd
 b
 , is not partitioned, and has about 10 GB of free space. Several tools exist for partitioning disks, the most popular of these are fdis
 k
 and parted. fdisk
 is menu driven, and can be simpler to work with, while parte
 d
 offers a quick and powerful command line utility, and a straightforward GUI option called gparte
 d
 .

There are two ways to use parte
 d
 : interactively, opening an interpreter and running commands sequentially with prompts; or on a single command line. Any changes made in interactive mode are written immediately without confirmation. To start parte
 d
 interactively, simply call parted and specify a target device without further commands

parted /dev/sd
 b

Common options and commands for parte
 d
 include:

	
-
 l
 – list partition table information for all devices, or a selected device.

	
select /dev/
 xy
 z
 – choose a device to use

	

mklabe
 l
 – create an empty partition table, which will hold partition information.

	Common labels are msdo
 s
 and gp
 t
 .

	

prin
 t
 – show information takes an argument of

	
device
 s
 – block devices

	
lis
 t
 – partition tables

	
fre
 e
 – unpartitioned space

	
mkpar
 t
 – create a partion by specifying name/type, start and end positions.

	
r
 m
 – delete a partion by specifying the partion number.

	
qui
 t
 – exit the program if in interactive mode.

We'll be using parte
 d
 to partition sd
 b
 , but first we'll need to label the device so that parted understands how to work with it. In this case, we will label it as gp
 t
 , or GUID Partition Table. GPT is an improvement over the older MBR (Master Boot Record), and adds support for more partitions and a vastly expanded size (around 9 Zettabytes vs 2 TB for MBR).

parted /dev/sdb mklabel gpt

Information: You may need to update /etc/fstab.

parted -l

Model: VMware Virtual disk (scsi)

Disk /dev/sdb: 10.7GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size Filesystem Name Flags

Above, we called parte
 d
 with the mklabe
 l
 command to set the label (partition table type) of /dev/sd
 b
 to gp
 t
 . We then used parted –
 l
 to list the partition tables of our block devices. The lack of output signifies an empty or missing partition table. To add new partitions

parted /dev/sdb mkpart data 1MiB 1025MiB

Information: You may need to update /etc/fstab.

parted /dev/sdb mkpart comp 1025MiB 2049MiB

Information: You may need to update /etc/fstab.

parted /dev/sdb print

Model: VMware Virtual disk (scsi)

Disk /dev/sdb: 10.7GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size Filesystem Name Flags

1 1049kB 1075MB 1074MB data

2 1075MB 2149MB 1074MB comp

We have now created two new 1GB partitions. We listed the partition table to verify our work in the utility. Now let’s verify with lsbl
 k
 :

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 16G 0 disk

├─sda1 8:1 0 1G 0 part /boot

└─sda2 8:2 0 15G 0 part

 ├─cl-root 253:0 0 10G 0 lvm /

 <truncated>

sdb 8:16 0 10G 0 disk

├─sdb1 8:17 0 1G 0 part

└─sdb2 8:18 0 1G 0 part

We can also verify by examining /proc/partition
 s
 directly:

cat /proc/partitions

major minor #blocks name

 8 0 16777216 sda

 8 1 1048576 sda1

 <truncated>

 8 16 10485760 sdb

 8 17 1048576 sdb1

 8 18 1048576 sdb2

To update this list, we could use the partprob
 e
 command with -
 s
 for show summary:

partprobe -s

/dev/sda: msdos partitions 1 2

/dev/sdb: gpt partitions 1 2

Making the filesystem

Having created a partition table and partitions on a device does not make that space useable. Before use, the partition must be formatted with a filesystem. EL7/8 offers support for several filesystems. Tools for creating these are in /usr/sbin:

ls /usr/sbin/mkfs*

mkfs mkfs.cramfs mkfs.ext2 mkfs.ext3 mkfs.ext4 mkfs.fat mkfs.minix mkfs.msdos mkfs.vfat mkfs.xfs

These commands may be used to create a filesystem of the type specified in their extension. The default filesystem in EL6 type was ext4. For EL7/8, it is xfs. ext2 and ext3 are still supported. The FAT and VFAT filesystems are popular choices for formatting removable drives. The MINIX and cramfs filesystems are lightweight and mainly used in embedded systems.

XFS provides several benefits which make it an attractive choice on modern systems. It uses extents (contiguous chunks of blocks) as ext2/3/4 would, making space allocation more efficient. It will also delay writes, holding changes in a buffer until modifications are likely finished and reducing the overall number of disk operations. Further, XFS uses Allocation Groups to parallelize filesystem operations. Each allocation group (by default, there are four: AG0-AG3) acts similarly to a subfilesystem, managing and tracking its own inodes and free space.

The following example uses xfs
 . From our earlier work, we know that a free partition exists at /dev/sdb
 1
 . To format that partition with a label of dat
 a
 :

mkfs.xfs -L data /dev/sdb1

Now we need to make the filesystem available to the operating system.

mount, umount

In the previous section, we created an xfs filesystem on /dev/sdb
 1
 . When we did so, the data structures necessary for that filesystem to track data blocks for its files and directories were established. However, these files and directories are inaccessible to us.

This is because we inhabit the root filesystem. The root filesystem, like any other, maintains an inode table and directory structure. Natively, these structures cannot account for information stored in other filesystems.

We can solve this problem through a process called mounting.
 Mounting allows us to make a filesystem available via a directory (also called a mount point) in the root filesystem. After the mounting operation occurs, any calls for the contents of the mount point directory will return the top level of the mounted filesystem (instead of the original contents in root).

Let’s explore the concept with an example. Here are the contents of the directory /testmount

ls -l /testmount

total 4

-rw-r--r--. 1 root root 67 Oct 23 14:14 NOTmounted

cat /testmount/NOTmounted

this file lives in the /testmount directory in the root filesystem

Note that a single file is present in this directory. Now we will mount the /dev/sdb
 1
 filesystem to the /testmoun
 t
 directory.

mount /dev/sdb1 /testmount

ls -l /testmount

total 16

drwx------. 2 root root 16384 Oct 23 11:42 lost+found

The file from earlier is gone, and a directory, lost+foun
 d
 , has taken its place. This is a special directory which will appear in the root of an ext filesystem. It holds orphaned or corrupted files discovered during a filesystem integrity check (
 fsc
 k
). It is not used with xfs filesystems.

We are seeing it now because we are currently viewing the contents of the mounted filesystem instead of the original contents of the /testmoun
 t
 directory. Essentially, the mount operation tells the kernel to take a detour at the /testmoun
 t
 directory, flipping over to the filesystem at /dev/sdb1
 instead. We can unmount the filesystem to reverse this.

umount /testmount

ls -l /testmount

total 4

-rw-r--r--. 1 root root 67 Oct 23 14:14 NOTmounted

Our file is now back.

Options exist to control the behavior and mode of mounted filesystems. You can pass these options via the -
 o
 option of the mount command. Some common ones include:

	
default
 s
 – Provides an alias for
 async
 ,
 auto
 ,
 dev
 ,
 exec
 ,
 nouser
 ,
 rw
 ,
 suid

	
asyn
 c
 – Allows the asynchronous input/output operations on the filesystem

	
aut
 o
 – Allows the filesystem to be mounted automatically using
 mount -
 a

	
de
 v
 /
 node
 v
 – Allows / prevents direct hardware access to storage devices

	

exe
 c
 /
 noexe
 c
 – Allows / prevents the execution of binary files

	
Remote filesystems and removable media should be mounted
 nodev,noexec

	

sui
 d
 /
 nosui
 d
 – allows / prevents action of suid and sgid bits

	
Remote filesystems, removable media and
 /hom
 e
 should be mounted
 nosuid

	
nouse
 r
 – Prevents mounting and unmounting by ordinary users

	
r
 w
 – Mounts the filesystem for both reading and writing

	
r
 o
 – Mounts the filesystem read only

	
loo
 p
 – Mounts an image as a loop device

	
noexe
 c
 – Disallows the execution of binary files on the particular filesystem

	
remoun
 t
 – Remounts the filesystem in case it is already mounted

	
use
 r
 – Allows mounting and unmounting by ordinary users

	
noaut
 o
 – Default behavior, disallows the automatic mount of the filesystem using the mount
 -
 a
 command

	
noatim
 e
 – do not update access time; for performance and longer SSD life

systemd.mount

In the previous sections, we discussed the concepts behind mounting, and the manual process for mounting and unmounting filesystems. Manual mounts are non-persistent. They will disappear when the system is rebooted.

Several processes exist for mounting filesystems either at boot time, or on when needed. Traditionally, these involved a file called /etc/fsta
 b
 and/or autof
 s
 .

EL7/8 still supports these concepts, but systemd-fstab-generato
 r
 will run behind the scenes to convert the entries in fsta
 b
 into the unit files that system
 d
 needs. It is possible to build these files by hand, and we will work through some examples of this. However, it is generally considered a simpler and safer practice to use fsta
 b
 and let the generator do the heavy lifting. The man page for systemd.moun
 t
 concludes "In general, configuring mount points through /etc/fstab is the preferred approach."

Here is a line from /etc/fstab:

/dev/sdb1 /testmount xfs defaults 1 0

	
/dev/sdb
 1
 – what to mount

	
/testmoun
 t
 – where to mount it

	
xf
 s
 – filesystem type

	
default
 s
 – options (defaults = rw,suid,dev,exec,auto,nouser,async)

	
1
 – dump?
 (
 1
 =yes;
 0
 =no)

	
0
 – fsck?
 (
 1
 =yes,chk 1st;
 2
 =yes,chk 2nd;
 0
 =do not fsck)

Lines added to this file will be mounted at boot and any other time that mount -
 a
 is called, unless the noaut
 o
 keyword is used in the options. This also allows mount operations to be performed with a shorter invocation: moun
 t
 /mount-poin
 t
 , with no backing device specified.

To do the same time with system
 d
 we would create a unit file in /etc/systemd/syste
 m
 with the extention .moun
 t
 and content like this:

[Unit]

Description = Mount /dev/sdb1 to /testmount

[Mount]

What = /dev/sdb1

Where = /testmount

Type = xfs

Options = defaults

[Install]

WantedBy = multi-user.target

The name of a .moun
 t
 or .automoun
 t
 unit must correspond to the absolute path of the mount point. Any slashes in the path must be replaced by dashes. For example Where = /mnt/foo/ba
 r
 requires a filename of mnt-foo-bar.moun
 t
 Conversion of complex paths or those with special characters can be accomplished with

systemd-escape -p
 “/some/complex/path with spaces
 ”

The [Unit
]
 header and Descriptio
 n
 are required for all system
 d
 unit files.

The [Mount
]
 header declares this is a mount unit. Below this header is the information necessary for system
 d
 to successfully perform the mount. Specifically, we tell system
 d
 :

	

Wha
 t
 – the location of the filesystem we wish to mount

	This can be a device, a filesystem label, or a UUID. UUID is preferred

	
Wher
 e
 – the mount point we wish to attach to

	
Typ
 e
 – the type of filesystem we will be mounting

	
Option
 s
 – any mount options we would like to apply

This maps directly to the information supplied in /etc/fsta
 b
 , only differing in structure.

The [Install
]
 section says when or if this unit file will be loaded. In this case:

WantedBy = multi-user.target

To mount this filesystem

systemctl start testmount.mount

To mount it automatically on boot

systemctl enable testmount.mount

After it has been started we can verify our work with:

systemctl status testmount.mount

● testmount.mount - Mount /dev/sdb1 to /testmount

 Loaded: loaded (/proc/self/mountinfo; disabled; vendor preset:

 Active: active (mounted) since Tue 2019-10-20 12:52:28 CDT; 3min

 Where: /testmount

 What: /dev/sdb1

 Process: 21004 ExecUnmount=/bin/umount /testmount (code=exited,

 Process: 21024 ExecMount=/bin/mount /dev/sdb1 /testmount -t xfs -o defaults (code=exited, status=0/SUCCESS)

or

mount | grep /testmount

/dev/sdb1 on /testmount type xfs (rw,relatime,seclabel,data=ordered)

systemd.automount

We can also cause this filesystem to be mounted dynamically on demand by creating an automount unit.
 Automount units cause their associated mount units to be started by system
 d
 whenever a user accesses the targeted mount point. This is frequently done for removable media. For this we create a .moun
 t
 unit as before, omitting the [Install
]
 section. We also create a .automoun
 t
 unit with the same name as the .moun
 t
 . It is the .automoun
 t
 rather than the .moun
 t
 which will be enabled. It should have a format like this:

[Unit]

Description = Automatically mount /dev/sdb1

[Automount]

Where = /testmount

TimeoutIdleSec=600

[Install]

WantedBy = local-fs.target

The [Automount
]
 section specifies the mount point from testmount.moun
 t
 and an automatic unmount after ten minutes of idle. This can be enabled and started:

systemctl enable --now testmount.automount

systemctl status testmount.automount | grep Active

 Active: active (running) since Tue 2019-10-20 10:26:15 CDT; 3h

To test it we need to ensure that testmount.moun
 t
 is inactive:

systemctl stop testmount.mount

systemctl status testmount.mount | grep Active

 Active: inactive (dead) since Tue 2019-10-20 13:41:36 CDT; 11min

To reactivate the mount we only need to access /testmoun
 t
 :

cd /testmount

systemctl status testmount.mount | grep Active

 Active: active (mounted) since Tue 2019-10-20 13:56:19 CDT; 10s ago

Changing to the /testmoun
 t
 directory caused the automount file to trip, which in turn executed the testmount.moun
 t
 unit mounting the directory. If we change out of the directory it will unmount itself when the timeout expires.

/etc/fstab

Earlier, we stated that placing our mount preferences into /etc/fsta
 b
 was generally considered to be a simpler option. Let's explore that process and its results.

Filesystems can be mounted by specifying a device location (
 /dev/sdb
 1
), a filesystem label (created with mkfs –
 L
), or by UUID. UUID is the safest and most secure. To get the UUID of a filesystem use the blki
 d
 command:

blkid /dev/sdb1

/dev/sdb1: LABEL="data"
 UUID="cfcab82e-2f87-46d0-838e-1afef5ec96e6"
 TYPE="xfs" PARTLABEL="data" PARTUUID="80defbb6-012c-4376-8af6-36f463"

This value is inserted into /etc/fsta
 b
 in place of the device name, like this:

UUID=cfcab82e-2f87-46d0-838e-1afef5ec96e6 /testmount xfs defaults 0 2

This will work immediately, but if we want to see what systemd-fstab-generato
 r
 creates for us, we'll need to execute systemctl daemon-reloa
 d
 . Once this is done, we can look in /run/systemd/generato
 r
 for a corresponding unit file.

ls /run/systemd/generator

boot.mount 'dev-mapper-cl\x2dswap.swap' home.mount local-fs.target.requires -.mount swap.target.requires
 testmount.mount

cat /run/systemd/generator/testmount.mount

Automatically generated by systemd-fstab-generator

[Unit]

SourcePath=/etc/fstab

Documentation=man:fstab(5) man:systemd-fstab-generator(8)

Before=local-fs.target

Requires=systemd-fsck@dev-disk-by\x2duuid-cfcab82e\x2d2f87\x2d46d0\x2d838e\x2d1afef5ec96e6.service

After=systemd-fsck@dev-disk-by\x2duuid-cfcab82e\x2d2f87\x2d46d0\x2d838e\x2d1afef5ec96e6.service

[Mount]

Where=/testmount

What=/dev/disk/by-uuid/cfcab82e-2f87-46d0-838e-1afef5ec96e6

Type=xfs

Either of these approaches can produce working results; ultimately it is up to administrators to decide which is the best fit.

swap

Swap is a form of virtual memory, backed by a disk or similar device. When RAM is overcommitted, the system may page inactive memory out to swap, and then back into memory again when needed.

To view free swap space, we can use #
 free –
 m
 . This will report free memory and swap space. To create swap space, we use mkswa
 p
 , and to activate or deactivate a swap device or file, we would use the swapo
 n
 and swapof
 f
 commands. We can also use # swapon –
 s
 to view swap currently in use.

When creating swap we may designate disk, partition, or file. Below, we explore each of these possibilities in turn.

To create new swap space on a disk or partition, begin by listing available disk space

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 16G 0 disk

├─sda1 8:1 0 1G 0 part /boot

<truncated>

sdb 8:16 0 10G 0 disk

├─sdb1 8:17 0 1G 0 part /testmount

└─
 sdb2
 8:18 0 1G 0 part

free -m

 total used free shared buff/cache available

Mem: 3941 339 2888 9 714 3338

Swap:
 1023
 0 1023

swapon -s

Filename Type Size Used Priority

/dev/dm-1 partition 1048572 0 -2

Here, we've used lsbl
 k
 to identify a free partition in /dev/sdb
 2
 and free -
 m
 to see that we currently have 102
 3
 MB of free swap space. The swapon -
 s
 command shows one currently assigned swap location: /dev/dm-
 1
 .

To use /dev/sdb
 2
 as an additional swap partition, we’ll need to use mkswa
 p
 to set up the partition for swapping:

mkswap /dev/sdb2

Setting up swapspace version 1, size = 1024 MiB (1073737728 bytes)

no label, UUID=5fea4e5b-4461-45ef-b6a4-c726cdf6221a

We need to edit /etc/fsta
 b
 so that our new swap space will be mounted at boot, adding an entry that looks like this:

/dev/sdb2 swap swap defaults 0 0

Finally, we need to inform the kernel that it has new swap space available.

swapon -v /dev/sdb2

swapon: /dev/sdb2: found signature [pagesize=4096, signature=swap]

swapon: /dev/sdb2: pagesize=4096, swapsize=1073741824, devsize=1073741824

swapon /dev/sdb2

We can verify our work with free -
 m
 and swapon -
 s
 :

free -m

 total used free shared buff/cache available

Mem: 3941 345 2881 9 714 3332

Swap:
 2047
 0 2047

swapon -s

Filename Type Size Used Priority

/dev/dm-1 partition 1048572 0 -2

/dev/sdb2
 partition 1048572 0 -3

If we do not have a free device for swap we can use a file instead. To create and zero the file we can use the fallocat
 e
 command.

fallocate -l 1G /swapfile

In EL7 with xfs this will not work, instead use

dd if=/dev/zero of=/swapfile count=1024 bs=1024

Since this file will hold the unencrypted contents of memory swapped down to disk, we should also ensure that it has sane permissions applied

chmod 0600 /swapfile

ls -l /swapfile

-rw-------. 1 root root 1073741824 Oct 25 11:10 /swapfile

We've now created an empty 1 GB file to use as swap. From here, the process of creating swap is the same as when we are using a device. Use mkswa
 p
 to prepare it and swapo
 n
 to activate.

When we're done with a swap device or file, we can remove it with swapof
 f
 .

systemd.swap

Rather than configuring swap in /etc/fsta
 b
 , you can use a .swa
 p
 unit file. Swap units, like .moun
 t
 units must be named after the controlled device with the slashes converted to dashes. A .swa
 p
 for /dev/sdb
 2
 must be named dev-sdb2.swa
 p
 .

The [Install
]
 section is typically not needed as systemd will automatically create the required dependencies. The format for a .swa
 p
 unit is this:

[Unit]

Description=Swap for sdb2

[Swap]

What=/dev/sdb2

Priority=2

Logical Volume Manager (LVM)

Logical Volume Manager (LVM) can aggregate physical storage (physical volumes) into pools called volume groups. This pool of space can then be divided into smaller chunks called logical volumes, and handed out with a much greater degree of freedom than traditional systems allow.

	
Physical Volumes
 (PVs) can be created from whole disks, partitions, or LUN-based external storage such as iSCSI or Fibre Channel.

	
Volume Groups
 (VGs) consist of one or more physical volumes. We must assign at least one physical volume to a volume group at the time of creation, and can add more as needed.

	
Logical Volumes
 (LVs) consist of a portion of the space belonging to a volume group. It may span many physical volumes, but can only ever belong to a single volume group.

	
Filesystems
 can be written to a logical volume using the same tools that would create them on a disk or partition.

Let's briefly discuss the procedure, and a list of associated commands (and their descriptions).

Physical Volum
 e
 →
 Volume Grou
 p
 →
 Logical Volum
 e
 →
 Filesystems

The first step in the process is to create a physical volume. For that, we must identify an available disk, partition, or LUN. We would then run pvcreat
 e
 against the selected device(s). The resulting PV(s) would then be available for use by a volume group.

The commands to create, modify, and destroy or inspect physical volumes are:

	
pvcreat
 e
 – create a PV

	
pvdispla
 y
 – display detailed information about a PV

	
pvremov
 e
 – remove (destroy) a PV

	
pvresiz
 e
 – resize PV to reflect size of underlying device

	
pv
 s
 – display information about PVs on a system

	
pvsca
 n
 – scan devices for LVM (PV) data; update cache

Physical Volum
 e
 →
 Volume Grou
 p
 →
 Logical Volum
 e
 →
 Filesystems

A volume group
 is a group
 of physical volumes
 . To create a volume group, we require at least one physical volume. More may be specified at volume group creation, or added later with the vgexten
 d
 command.

The commands to create, modify, and destroy or inspect physical volumes are:

	
vgcreat
 e
 – create a VG

	
vgdispla
 y
 – display detailed info about VG(s)

	
vgexten
 d
 – add PV(s) to VG

	
vgreduc
 e
 – remove PV(s) from VG (CAUTION!)

	
vgremov
 e
 – destroy a VG

	
vg
 s
 – display information about VGs

	
vgsca
 n
 – scan devices for LVM (VG) data; update cache

Physical Volum
 e
 →
 Volume Grou
 p
 →
 Logical Volum
 e
 →
 Filesystems

Logical volumes
 are a portion of the physical storage managed by a volume group. This storage can come from any of the physical volumes backing the volume group. This is normally not specified, rather we allow LVM to manage the physical space for us.

A simple way of stating this:

	Logical volumes can span multiple physical volumes

	Logical volumes may only ever belong to a single volume group

The commands to create, modify, and destroy or inspect physical volumes are:

	
lvcreat
 e
 – create an LV

	
lvdispla
 y
 – display detailed information about an LV

	
lvexten
 d
 – add physical extents to an LV

	
lvreduc
 e
 – remove physical extents from an LV

	
lvremov
 e
 – destroy an LV

	
lvresiz
 e
 – shrink or grow an LV (-r autoresize resident FS)

	
lv
 s
 – display information about LVs

	
lvsca
 n
 – scan devices for LVM (LV) data; update cache

Once a logical volume has been created, a filesystem can be written to it using mkf
 s
 and mounted using any of the methods discussed above.

Putting this process together we can walk through an example using two free partitions: sdb
 3
 and sdb
 4
 . We'll use sdb
 3
 to create a new VG, then create a logical volume on that VG.

pvcreate /dev/sdb3

 Physical volume "/dev/sdb3" successfully created.

vgcreate ExampleVG /dev/sdb3

 Volume group "ExampleVG" successfully created

lvcreate -n ExampleLV -l 100%FREE ExampleVG

 Logical volume "ExampleLV" created.

vgs

 VG #PV #LV #SN Attr VSize VFree

 ExampleVG 1 1 0 wz--n- 1020.00m 0

 cl 1 6 0 wz--n- <15.00g 0

Above, we directed lvcreat
 e
 to use 100 percent of free space. We could have also specified a specific size with different invocations of either the -
 l
 or -
 L
 options. Let’s take a moment to review our work.

vgdisplay -v ExampleVG

 --- Volume group ---

 VG Name ExampleVG

<truncated>

 VG Size 1020.00 MiB

 PE Size 4.00 MiB

 Total PE 255

 Alloc PE / Size 255 / 1020.00 MiB

 Free PE / Size 0 / 0

 VG UUID IUZLT6-mrEt-vwJp-8zpI-Xo66-NY4z-4awMkn

--- Logical volume ---

 LV Path /dev/ExampleVG/ExampleLV

 LV Name ExampleLV

 VG Name ExampleVG

 LV UUID e6dDD2-2cBl-cLjH-wGIb-iCWI-Ouyn-SbX8r7

 LV Write Access read/write

 LV Creation host, time Book-8-C-Client.el8.not, 2019-10-25 14:35:37 -0500

 LV Status available

 # open 0

 LV Size 1020.00 MiB

<truncated>

We can see in the output above that our logical volume, ExampleLV, has taken all available space on the volume group. The sole PV backing our volume group has been completely consumed. We’ll make a note of this, and return to it in a moment.

Ultimately, the purpose of a logical volume is to serve as backing for either swap or a filesystem.

Let’s format our logical volume with an ext4 filesystem.

mkfs.ext4 -L Class /dev/ExampleVG/ExampleLV

mke2fs 1.44.3 (10-July-2018)

Creating filesystem with 261120 4k blocks and 65280 inodes

Filesystem UUID: efa40f33-b81d-44d0-98dd-dd71e5a67b1d

Superblock backups stored on blocks: 32768, 98304, 163840,

<truncated>

mount /dev/ExampleVG/ExampleLV /mnt

df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 1014M 40M 975M 4% /testmount

/dev/mapper/ExampleVG-ExampleLV 988M 2.6M 919M 1% /mn
 t

Note that the device listed as backing this filesystem is /dev/
 mapper/
 ExampleVG-ExampleL
 V
 instead of the supplied device /dev/
 ExampleVG/ExampleL
 V
 . This is expected in EL7/8; the device mapper handles mapping block devices onto virtual block devices for LVM2. Device mapper also plays a role in disk encryption and software RAID.

Finally, when our LV-backed filesystems become full, we may extend the filesystem and the logical volume it rests on. First, increase the size of the logical volume. Logical volumes will take their space from any of the physical volumes belonging to its volume group. In our case, there is no space currently available. To remedy this, we will need to add a new physical volume to the volume group.

pvcreate /dev/sdb4

 Physical volume "/dev/sdb4" successfully created

vgextend ExampleVG /dev/sdb4

 Volume group "ExampleVG" successfully extended

lvextend /dev/ExampleVG/ExampleLV -L +500M

 Size of logical volume ExampleVG/ExampleLV changed from 1020.00 MiB (255 extents) to 1.48 GiB (380 extents).

 Logical volume ExampleLV successfully resized.

At this point, we would use resize2f
 s
 to resize the filesystem into the newly available space. This command can be used to shrink or grow an ext2, ext3, or ext4 filesystem. We could also have called # lvexten
 d
 -
 r
 , which would have handled filesystem resizing for us automatically.

LUKS

There are a variety of methods for securing access to data on EL7/8 systems, but many of these can be circumvented if an attacker has access to a disk directly. To combat this, administrators may choose to encrypt disks (possibly even the boot device of a system). Encrypting a drive scrambles the data such that, should an attacker gain direct access to a hard drive, backup, or disk image, the data on the drive will be completely obscured and unrecoverable without the accompanying passphrase or key file which unlocks and de-scrambles the underlying data.

The most common method of encrypting disks in EL7/8 is the dm-cryp
 t
 module with the Linux Unified Key System
 , or LUKS
 . Though dm-cryp
 t
 can be invoked without LUKS, this is rarely done. This is because LUKS provides many features, such as salting, key management, and error checking that plain dm-cryp
 t
 does not.

To encrypt a device with these features we invoke cryptsetu
 p
 , which can apply disk encryption in the following ways:

	Encrypt a device (such as a hard drive, partition, or LUN) directly.

	Encrypt the physical volumes of an LVM volume group (LVM over LUKS).

	Apply encryption to logical volumes (LUKS over LVM).

	Encrypt an entire system from the boot device up (Whole Disk Encryption)

Whole disk encryption is not required by STIG for virtual machines or servers in a secure environment. For laptops, however, it is. The reasoning here is that, if employed, it will render a system completely unbootable without supplying a passphrase or key at boot time. This is desirable for laptops and other such devices where physical theft or loss is a concern. It is less desirable in virtual environments, where console access to a virtual machine would be required each time a VM boots. Implementing whole disk encryption is best done during installation. Converting a non-encrypted system to a whole disk encryption model AFTER installation is a complicated and difficult process.

LUKS on a Device

Let’s walk through the direct application of LUKS encryption to a hard disk. The steps we implement here will also, in large part, be applicable to later sections dealing LVM encryption.

To begin, we need to identify a target device. We can list block devices on our system with the lsbl
 k
 command:

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 16G 0 disk

├─sda1 8:1 0 1G 0 part /boot

<truncated>

sdb 8:16 0 10G 0 disk

Here we’ve identified a device, /dev/sd
 b
 , as our target. Now we need to create the encryption layer, supplying the target disk and a passphrase:

cryptsetup luksFormat /dev/sdb

WARNING!

========

This will overwrite data on /dev/sdb irrevocably.

Are you sure? (Type uppercase yes):
 YES

Enter LUKS passphrase:
 Passphrase

Verify passphrase:
 Passphrase

Our next step is to open the LUKS device for reading and writing using cryptsetup luksOpe
 n
 , supplying the name of the base device and the passphrase to open it, along with a MAPPING name:

cryptsetup luksOpen /dev/sdb encDisk

Enter passphrase for /dev/sdb:
 Passphrase

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 16G 0 disk

├─sda1 8:1 0 1G 0 part /boot

<truncated>

sdb 8:16 0 10G 0 disk

└─encDisk 253:6 0 10G 0 crypt

From this point forward, all commands will use the name of the mapped device
 , encDis
 k
 , rather than the base disk. We now need to format the disk with a filesystem, in this example ext4; and mount it:

mkfs.ext4 /dev/mapper/encDisk

mke2fs 1.44.3 (10-July-2018)

Creating filesystem with 2619392 4k blocks and 655360 inodes

<truncated>

mount /dev/mapper/encDisk /mnt

ls /mnt

lost+found

LUKS and LVM

When working with whole disks, or partitions, encryption is applied to the base device as has been demonstrated. When working with LVM, the encryption may be applied either
 at the logical volume layer or
 at the physical volume layer. These situations are referred to as “LUKS over LVM” or “LVM over LUKS”.

For most purposes, applying encryption to the logical volume is the best answer, or “LUKS over LVM”. This is because volume groups may (and frequently do) contain multiple physical volumes. Applying encryption at the PV layer and then incorporating the encrypted volumes into a volume group is problematic; loss of a key on one PV could lead to loss of an entire volume group.

In any case, the encryption process is ultimately the same for logical volumes as for physical devices; we simply need to supply the location of a logical volume in place of a physical disk or partition.

Automating the Mount Process for Encrypted Devices

The standard process for automating mount operations involves entries in the /etc/fsta
 b
 file. This is also the case for encrypted disks, but we have additional considerations.

As we have seen, encrypted devices cannot be accessed until they have been opened and mapped. Nothing in the /etc/fstab
 file accommodates this operation directly. To address this, we turn to another file: /etc/cryptta
 b
 .

The purpose of /etc/cryptta
 b
 is to contain mapping information for encrypted disks. In other words, it will automate the work performed by the cryptsetup luksOpe
 n
 command. Note that this file is only consulted at boot time for fstab operations
 .

The example below shows how an /etc/cryptta
 b
 entry may be created, and what the corresponding entry in /etc/fsta
 b
 might contain:

tail -1 /etc/crypttab

encDisk /dev/sdb none

tail -1 /etc/fstab

/dev/mapper/encDisk /secret ext4 defaults 1 2

mount /secret

Above, the example commands succeed because the targeted LUKS device was already open and mapped. If it had been closed, /etc/fsta
 b
 would not have automatically consulted /etc/cryptta
 b
 to open the device.

Keys

When encrypted disks are opened, a passphrase must ordinarily be supplied. In the case that a boot device is encrypted, this prompt will stop the system from booting until manual intervention occurs. To avoid this, we may create a cryptographic key, assign it to the device, and supply the key location in /etc/cryptta
 b
 . This file takes one line per encrypted device, with the format:

name device [optional password] [options]

 secret UUID=XXXX-YYYY… none nofail

This will map the device secre
 t
 to the specified UUID prompting for password (
 non
 e
), but not delaying boot if the unlock fails or is delayed (
 nofai
 l
).

It should go without saying that these keys must be protected. Below, we demonstrate the creation and assignment of a key:

dd if=/dev/urandom of=/root/keyfile bs=1024 count=4

4+0 records in

4+0 records out

4096 bytes (4.1 kB) copied, 0.00206224 s, 2.0 MB/s

chmod 0400 /root/keyfile

cryptsetup luksAddKey /dev/sdb /root/keyfile

Enter any passphrase:
 Passphrase

umount /secret

cryptsetup luksClose encDisk

cryptsetup luksOpen /dev/sdb encDisk --key-file=/root/keyfile

mount /secret

With this done, we now need to edit /etc/cryptta
 b
 , informing it of our new key:

tail -1 /etc/crypttab

encDisk /dev/sdb /root/keyfile luks

After a reboot, the new encrypted filesystem will automatically be mounted at /secre
 t
 .

Module 10: Scheduling Events

EL7/8 has several ways to schedule events for later execution. The newest, systemd.timer
 s
 , is the most useful and flexible, but can require more work. There are older tools: cro
 n
 , anacro
 n
 , a
 t
 , and batc
 h
 , each of which have their function. As system
 d
 matures and admins become more comfortable with the concepts and interfaces to it, the traditional tools may go away (or at least not be installed by default). A comparison of the tools:

	

systemd.timer
 s
 – provided by systemd

	
can specify

	exact time with accuracy of up to one microsecond (
 u
 s
)

	intervals such as dail
 y
 or hourl
 y

	relative time: boot time, last job start/end time, start time of the timer itself

	any combination of the above

	can include randomization

	run either by the owning user, or a pseudo-user named after the service

	can start a missed job

	jobs can be independent of or dependent on eachother

	
configured as unit files

	transient unit files can be created with systemd-run

	

cro
 n
 – provided by the package cronie

	exact time specified with granularity of one minute

	available to normal users by default

	also runs any file in /etc/cron.hourly

	can run jobs simultaneously

	will not run a job if the time to run is missed

	

anacro
 n
 – provided by the package cronie-anacro
 n
 ;
 dependent on cro
 n

	rough time with a granularity of one day

	includes start time randomization

	restricted to root

	will start a missed job when possible

	runs jobs sequentially

	will run all executable files in /etc/cron
 .
 [
 dail
 y
 , weekl
 y
 , monthl
 y
]

	

at

	creates a single job from the command line

	flexible time specification

	can execute multiple commands in a single job

	stores jobs on disk – persistent across reboots

	

batc
 h
 – a special invocation of at

	will execute jobs when cpu load average falls below a configured threshold

systemd.timer

The most flexible method for scheduling jobs is systemd.time
 r
 . You get a rich interface using the standard systemd.uni
 t
 file format and time specifications as laid out in the man page for systemd.tim
 e
 .

As an example we will use a problem mentioned in earlier. The locat
 e
 database needs to be updated regularly by running updated
 b
 . In EL6 this was done using a default job in anacro
 n
 . In EL7/8 this is not done by default. In EL8, there is a timer-based solution provided, mlocate-updated
 b
 ; but it is not active. There are several other timers which are included for normal maintenance tasks including dnf-makecach
 e
 and fstri
 m
 .

There are three parts to any systemd.time
 r
 :

	An executable to run – mlocate-run-updatedb

	A .servic
 e
 unit which calls the executable – mlocate-updatedb.service

	A .time
 r
 unit which calls the .service – mlocate-updatedb.timer

The .time
 r
 and the .servic
 e
 for mlocate-updated
 b
 are in usr/lib/systemd/syste
 m
 . Timer and service unit files can be located in any of the system
 d
 directories, viewable with

systemd-analyze unit-path
 s
 . These are the paths evaluated by system
 d
 during boot and when systemctl daemon-reloa
 d
 is called.

If the .time
 r
 and .servic
 e
 have the same name, they are automatically associated. If they do not, you can specify the .servic
 e
 name with Unit
 =
 in the timer.

The .servic
 e
 unit file is what runs the actual executable; its format is this:

[Unit]

Description=Update a database for mlocate

[Service]

ExecStart=/usr/libexec/mlocate-run-updatedb

Nice=19

IOSchedulingClass=2

IOSchedulingPriority=7

PrivateTmp=true

PrivateDevices=true

PrivateNetwork=true

ProtectSystem=true

The .time
 r
 unit triggers the .servic
 e
 unit; its format is this:

[Unit]

Description=Updates mlocate database every day

[Timer]

OnCalendar=daily

AccuracySec=24h

Persistent=true

[Install]

WantedBy=timers.target

The [Install
]
 section specifies when the timer will become active, and allows this unit to be enabled using systemct
 l
 . It is the .time
 r
 which is enabled, not the .servic
 e
 .

The [Timer
]
 section says when the .servic
 e
 unit will be called. This particular one says:

	run every day

	at some time during a 24 hour period, we don't really care when

	run immediately if a run was missed because the system was off

systemd.time

Time specification is complex. For details see the systemd.tim
 e
 man page. You can specify:

	
Time from an event (
 OnActive
 =
 , OnBoot
 =
)

	ranges from microseconds (
 u
 s
 , use
 c
) to years (
 y
 , yea
 r
 , year
 s
)

	
can be expressed in multiple ways (
 minute
 s
 , minut
 e
 , mi
 n
 , m
)

	Don't confuse m
 = minut
 e
 with M
 = month

	can be mixed and matched: 23 h 15 min

	
Specific time (
 OnCalendar
 =
)

	can be a simple interval: dail
 y
 or weekly

	
or formatted as:
 Day YYYY-MM-DD HH:MM:SS

	
Da
 y
 (of week) is the English three letter abbreviation

	all others are numeric

	portions can be omitted

	Ranges are expressed with two dots: Mon..Fri

	Asterisks can be used as wildcards: Mon *-*-1 09:00

	To specify every Day or Date, omit that portion of the specification

	An omitted Time will evaluate as 00:00:00

	Incrementing is done with a slash and a number: * *-*-1/7 01:00

	Interpretation is liberal and fairly reasonable: mon..Fri 21-1-*

	Days from the end of month is indicated a by tilde: *-05
 ~
 1

	Takes RandomizedDelaySe
 c
 option to prevent job overlap

	Takes AccuracySe
 c
 to coordinate timers within a system

	Uses local timezone time unless otherwise specified

Some examples:

	Run fifteen minutes after activation of the timer:

OnActiveSec=15 min

	Run one hour after boot, and then weekly:

OnBootSec=1h

OnUnitActiveSec=1w

	Run at 11:15 am on even numbered weekdays:

OnCalendar=Mon..Fri *-*-02/2 11:15

	Run at 1 am on the first day of the quarter:

OnCalendar=*-1,4,7,10 01:00

	Run hourly:

OnCalendar= *-*-* *:00:00

	Run after noon on the next to last day of every month:

OnCalendar=*-*~1 12:00

RandomizedDelaySec=11h 59m

	Run in the morning of the last Friday of odd numbered months:

Oncalendar=Fri *-1/2~1..7

AccuracySec=12h

In EL8, time specifications can be checked with

systemd-analyze calendar
 some-time-spec

This will evaluate the day, date, and time portions of the specification separately; you will still need to do some combining in your head. It will at least give an idea of how system
 d
 is going to read what you typed.

systemd-run .timers

A transient timer stored in memory can be created using systemd-ru
 n
 . This can run a single event based on relative time from now, a fixed time event, or a recurring event which will persist until next boot. The temporary timer and service files are placed in /run/systemd
 /
 or
 /run/systemd/transient/

Arguments mimic the time specification pattern. Days must be all lowercase and any specification with a space must be in double quotes. For example:

systemd-run --on-active="1 h 30 m"
 command

systemd-run --on-calendar="wed 12:01"
 command

systemd-run --on-active="1 hour" --on-calendar=daily
 command

anacron

If installed, anacro
 n
 (part of cronie-anacro
 n
) is a convenient way to schedule a recurring task. Unlike cro
 n
 it will run a task that was missed. However, it does not support precise time.

Jobs are scheduled by simply creating a symlink to the executable from the appropriate directory: /etc/cron.dail
 y
 , cron.weekl
 y
 , or cron.monthl
 y
 .

By way of example, if we wanted to use anacro
 n
 rather than system
 d
 to automate the updated
 b
 task mentioned above, we would do this:

	
vi /usr/local/sbin/updatedb.tas
 k

	Edit the file to contain the following:

#!/bin/sh

nodevs=$(awk '$1 == "nodev" && $2 != "rootfs" && $2 != \ "zfs" { print $2 }' < /proc/filesystems)

the above should be one line

renice +19 -p $$ >/dev/null 2>&1

ionice -c2 -n7 -p $$ >/dev/null 2>&1

/usr/bin/updatedb -f "$nodevs"

	Set permissions and ownership of 500 root:roo
 t

	Create a symlink to it from /etc/cron.dail
 y

You can also add a line directly into /etc/anacronta
 b
 in this format:

IntervalDays DelayMin Name Path/Command

 3 21 bob.job /home/bob/custom.script

This will run a job every three days, 2
 1
 minutes after the beginning of the START_HOURS_RANG
 E
 , plus a random amount up to RANDOM_DELA
 Y
 . These values can be adjusted in /etc/anacrontab

cron, crontab

The cron
 d
 service provided by the croni
 e
 package allows precise scheduling of recurring tasks. On older systems this was done by directly editing /etc/cronta
 b
 . Some documentation will still lead you this way. This is no longer considered best practice. That file should only be altered if you wish to change the global behavior of cro
 n
 .

To schedule a task, use # crontab -
 e
 .

This creates a separate file per user in /var/spool/cro
 n
 .

All users can use cro
 n
 by default. For security create a file:

/etc/cron.allo
 w
 with a single line: root

To further restrict access edit /etc/security/access.con
 f
 and add:

-:ALL EXCEPT root:cro
 n

If you do allow use of cron by other accounts (such as service accounts), when making an entry for that account, do not simply su –
 usernam
 e
 instead use

crontab -e -u
 usernam
 e

You will now be editing an empty file. Its format is this:

Min Hour Date Month Day Path/Command

15 11 2-31/2 * mon-fri /usr/bin/wall "Rus buys lunch!"

This means:

	
Field

	
Accepted Values

	
Example

	
Meaning

	
minutes

	
0-59

	
15

	
15 minutes after the hour

	
hour

	
0-23

	
11

	
11 am

	
date (day of month)

	
1-31

	
2-31/2

	
even numbered days

	
month

	

1-1
 2
 or

jan-dec

	
*

	
any month

	
day

	

sun-sa
 t
 or

0-
 7
 (
 0
 & 7
 = su
 n
)

	
mon-fri

	
weekdays

There are some special statements:

	The asterisk *
 is used to specify a value of any.

	Incrementing is specified with a forward slash (/
 3
 means increment by 3).

	Values can be separated by commas (no spaces).

To run at 1 am on the first day of the quarter:

Min Hour Date Month Day Path/Command

0 1 1 1,4,7,10 * /usr/bin/report.job

cron
 will check for matches every minute. If all time fields in an entry match the command will run. Be careful with your *
 ; if there were one where the 0
 is in the above line, the job would run every minute from 1:00 to 1:59.

at, atq, atrm, batch, atd

A fast way to run a job once is with a
 t
 , or its related command batc
 h
 . They allow you to create a multi-line job which runs either at a specific time(
 a
 t
), or when cpu load gets low enough(
 batc
 h
).

To create a job, type a
 t
 followed by a time specification. Then press ENTE
 R
 .

You will then have an at>
 prompt to enter commands. When done exit with CTL-
 d
 .

All commands will be run at the time specified in /bin/s
 h
 with the environment you had when at was invoked (
 $PAT
 H
 and such). If you wish to run the commands in bas
 h
 instead, make the first command issued bas
 h
 .

Creating a message for everyone 10 minutes from now would look like this:

at now + 10 minutes

warning: commands will be executed using /bin/sh

at> wall "Break Time"

CTL-d

at> <EOT>

job 2 at Mon Oct 28 08:52:00 2019

Time specification can take a number of forms:

	
midnight

	
now + 1 hour

	
4pm

	
16:00 Aug 10 2018

	
noon tomorrow

View scheduled jobs with # at
 q
 ; remove them using # atrm
 job-numbe
 r
 .

If you wish to run a computing intensive job when there is less load on the system, you can use batc
 h
 . It is used just like a
 t
 only without the time specification. Jobs queued using batch will wait for the one minute load average to fall below a specified level before running. By default, that load average is 0.8. It can be adjusted temporarily using atd -l
 0.
 5
 or set permanently in /etc/sysconfig/at
 d
 .

It is worth noting that a
 t
 runs jobs sequentially, and it will not start the next until the first has completed; while batc
 h
 will overlap jobs, starting them with a default 60 second offset.

As with cro
 n
 , create a file /etc/at.allo
 w
 with the single entry of roo
 t
 for security.

Module 11: Networking

On older systems IP configuration was done by editing ifcfg
 -
 files in /etc/sysconfig/network-scripts
 /
 or using commands such as ifconfi
 g
 or i
 p
 . This is no longer the case. The i
 p
 command is still used to view status but should not be used for configuration.

Unlike Red Hat and CentOS, by default Amazon Linux uses the older style networking and firewall configuration. It can either be treated as if it were an EL6 machine or you can install NetworkManage
 r
 and firewall
 d
 .

nmcli, nmtui, ip

In EL7/8 the network stack is controlled by the NetworkManage
 r
 service. You can issue commands to NetworkManage
 r
 in several ways. The best tool for controlling NetworkManage
 r
 is nmcl
 i
 . It has the capability to bond multiple physical connections into a trunk. It can even be used to configure a Wi-Fi hotspot. The full use of nmcl
 i
 is beyond the scope of this book. We will concentrate on basic static IP configuration

To get the name of the current connection:

nmcli connection show --active

NAME UUID TYPE DEVICE

ens3
 d9ba4dd0-4197-4a82-bb70-28764c1c47cf ethernet
 ens3

This shows that both the connection name and the device name is ens
 3
 . Ethernet devices begin with e
 n
 , wireless lan with w
 l
 , wireless wan with w
 w
 . It is important to distinguish between the device
 (the physical interface) and a connection
 (the configuration applied to a device). By default the connection and the device will have the same name.

To get full details on that connection:

nmcli connection show
 ens3

Unset properties will show as a pair of dashes: -
 -
 . To only display set properties:

nmcli connection show
 ens3
 | grep -v "\-\-" | less

To rename this connection

nmcli connection modify
 ens3
 con-name
 Old-DHCP

To create a new connection we write an exceedingly long line specifying all the details:

nmcli connection add type ethernet con-name
 Static-123
 ifname
 ens3
 \

ipv4.addresses
 192.168.122.123/24
 ipv4.gateway
 192.168.122.1
 \

ipv4.dns
 192.168.122.1,192.168.122.2
 ipv4.dns-search
 mydomain.com
 \

connection.autoconnect yes ipv4.method manual

To activate the newly created connection:

nmcli connection up
 Static-12
 3

A running connection can be modified and reinitialized:

nmcli connection modify
 Static-123
 \

ipv4.addresses
 192.168.122.123/24,192.168.122.111/24

nmcli connection up
 Static-123

Alternatively you can interactively create or edit a connection:

nmcli connection edit
 Static-123

nmcli>
 set ipv4.addresses
 192.168.122.123/24

Do you also want to set 'ipv4.method' to 'manual'? [yes]:
 y

One common error when using the ipv4.addresse
 s
 option: if you do not specify a slash notated subnet mask with the address, it will presume /3
 2
 , which is a network of one host and not very useful.

Network configuration can also be accomplished from the GUI if available, or from a text menu interface using nmtu
 i
 . While more limited than nmcl
 i
 , these can be useful tools.

It should be noted that nmcl
 i
 produces the traditional configuration scripts in /etc/sysconfig/network-script
 s
 . While changes can be made directly there, this is not recommended, as the scripts will be overwritten the next time you use nmcl
 i
 or nmtu
 i
 . All changes should be done only with nmcl
 i
 , or another NetworkManage
 r
 based tool.

While still partially supported, the older commands ifconfi
 g
 and ar
 p
 should no longer be used for configuration or even trusted even to simply report information, as they will give incomplete results. To view IP information either use nmcl
 i
 with no argument, or use the ip
 command. Common arguments for i
 p
 include:

	

ip addr
 – view addresses

	
ip addr show dev
 devicename

	

ip neig
 h
 – view the address resolution tables, arp for IPv4 and ndisc for IPv6

	
ip neigh flush al
 l
 – remove all cached arp and ndisc entries

	
ip rout
 e
 – view routes

hostnamectl

In other Unix-like operating systems you might have set hostname with hostnam
 e
 , or by editing a file. The hostnam
 e
 command is still available on EL7/8, but only for backwards compatibility (for instance with old scripts). Today we use hostnamect
 l
 . If you set the hostname in any way other than hostnamect
 l
 , the change will either be reverted at the next boot, or simply ignored.

With no arguments hostnamect
 l
 gives a status report:

hostnamectl

Static hostname: localhost.localdomain

 Icon name: computer-vm

 Chassis: vm

 Machine ID: dee4216aa08c497c97bf5aea0ae00478

 Boot ID: d63fdfa01928421fa0fe3a5ba1b0a895

 Virtualization: vmware

 Operating System: CentOS Linux 7 (Core)

 CPE OS Name: cpe:/o:centos:centos:7

 Kernel: Linux 3.10.0-514.el7.x86_64

 Architecture: x86-64

In addition to the hostname, localhost.localdomai
 n
 , we also got a lot of other information such as the exact kernel version, the distro and its version. It even let us know that we're running in a virtual machine using VMware virtualization. hostnamect
 l
 distinguishes three types of hostname:

	
transient
 – the current hostname, which may or may not be retained at next boot

	
static
 – the hostname you will have at next boot

	
pretty
 – a display name, can contain characters that would otherwise be illegal

To set the hostname:

hostnamectl set-hostname
 class-129.vm.not

nsswitch.conf, /etc/hosts

To resolve hostnames to addresses, EL first looks to the file /etc/nsswitch.con
 f
 . This file is a bit of a catch all, with lines for many services. For hostname resolution, the relevant line is:

hosts: files dns myhostname mymachines

Which simply says: "When resolving hosts
 :
 look in

	
/etc/host
 s
 , then ask the

	
dn
 s
 servers, then run

	
nss-myhostnam
 e
 , which returns all locally configured IP addresses, then run

	
nss-mymachine
 s
 , which resolves locally hosted virtual machines

Address and hostname combinations can be added to /etc/host
 s
 . This is often done because the name in question is not served by a DNS server (as in a test network), to provide faster resolution, or for redundancy in case of DNS or network failure. If you do add entries to the hosts file, remember that when an address changes, you must manually change /etc/host
 s
 .

One line that should be added on an EL7/8 system is an entry for the local machine's static IP. It should be the first line, and takes the order of IP, FQDN, hostname:

192.168.1.129 class-129.vm.not class-129

127.0.0.1 localhost localhost.localdomain localhost4 <truncated>

::1 localhost localhost.localdomain localhost6 <truncated>

firewall-cmd

EL7/8 by default comes with a host-based firewall installed and active. It uses firewall-cm
 d
 to interface with the backing service firewall
 d
 , which in turn is backed by low-level programs: iptable
 s
 , ip6table
 s
 , or nf
 t
 , which in turn speak directly to the kernel.

Changes are usually made to the firewall with firewall-cm
 d
 while it is running. By default all changes are transient and will be lost on a reload or reboot. Permanent changes can be made with the firewall not running using firewall-offline-cm
 d
 .

	To make persistent changes append --permanen
 t
 to each command

	Or issue # firewall-cmd --runtime-to-permanen
 t
 when you have finished

	After changes the firewall should be reloaded using # firewall-cmd --reload

The firewall is broken into zones. There are nine built-in zones ranging from truste
 d
 (ACCEPT everything) to dro
 p
 (don't respond to anything). If you do not specify a zone name in a command the default zone will be used. Sub-commands for zone manipulation:

	
--list-all-zone
 s
 – show all available zones

	
--get-default-zon
 e
 /
 --set-default-zon
 e
 – view/set default

	
--info-zone=
 publi
 c
 – list rules of a zone

	
--list-al
 l
 – display active zone(s) and rules

A zone can be associated with:

	

Services

	
--get-service
 s
 – list configured services

	
--info-service=
 ft
 p
 – get details of a service

	
--zone=
 public
 --add-service=
 ssh
 – add service to a zone

	Services are defined in /usr/lib/firewalld/services/

	Custom services can be created in /etc/firewalld/

	

Sources
 – an IP range or MAC address

	
--zone=trusted --add-source=
 192.168.2.0/2
 4
 – add a range

	

Ports

	
--add-port=
 443/tc
 p
 – add a port

	

Protocols

	
--zone=dro
 p
 --add-protocol=
 icm
 p
 – add a protocol

	Valid protocols are listed in /etc/
 protocols

	

Rich Rules
 – these are more free form, see man firewalld.richlanguage

	Restricting ssh to a local network:

--add-rich-rule=' rule family="ipv4" source address="192.168.0.0/24" service name="ssh" accept'

	
Allow a single address to connect for remote auditing
 :

--add-rich-rule=' rule family="ipv4" source address="192.168.238.6" port protocol="tcp" port="60" accept'

	

Interface
 – to add an interface to a new zone three steps are required:

	
firewall-cmd --zone=
 public
 --remove-interface=
 ens224

	
firewall-cmd --zone=
 drop
 --add-interface=
 ens224

	
nmcli connection modify
 ens224
 connection.zone
 drop

	
IP-Sets
 – These are lists of addresses which can either be input individually, or loaded from a file and used as either a whitelist or blacklist. For usage consult the Red Hat Security Guide.

Rules are evaluated until a match is made. The order of evaluation is:

	
Match sources
 from the zones in alphabetical order:

	

bloc
 k
 , dm
 z
 , dro
 p
 , externa
 l
 , hom
 e
 , interna
 l
 , publi
 c
 , truste
 d
 , work

	Source can be: i
 p
 , ip rang
 e
 , mac addres
 s
 , or an ip-set

	
If there is a source match perform the target action for that zone:

	
bloc
 k
 – REJECT with an error message sent to source

	
dro
 p
 – DROP with no response at all

	
truste
 d
 – ACCEPT without question

	
all other zones – defaul
 t
 , which is:

	If there is a next step go to it

	Otherwise ACCEPT icmp, REJECT all else

	
If the interface
 has a specified zone, check that zone for:

	

service
 s
 , port
 s
 , protocol
 s
 , rich rules

	If there is a match, ACCEPT, or take the rich rule action

	Otherwise perform the zone's target action.

The behavior of the defaul
 t
 target is hard-coded and cannot be changed. The default zone is publi
 c
 with target=defaul
 t
 . This means we will ACCEPT icmp and REJECT with a message everything else. This is not a good practice, disallowed packets should be dropped silently. To correct this:

firewall-cmd --permanent --zone=public --set-target=DROP

In case of emergency, the firewall can be configured to drop all new connections, using

firewall-cmd --panic-o
 n

The configuration for firewall
 d
 is in /etc/firewalld/firewalld.con
 f
 (general configuration) and /etc/firewalld/zones/
 zonename
 .xm
 l
 (direct rule configuration). The default zone configuration is in /usr/lib/firewalld/zones
 /
 . To restore the defaults, simply delete any zone files in /etc
 /
 .

If you want to see what configuration changes firewall-cm
 d
 is making at the lowest level, it depends on your particular EL version. Older versions place configuration in iptable
 s
 , newer versions depend on nf
 t
 (net filter tables). If your distro allows a choice between the two, it is configured in firewalld.con
 f
 as FirewallBacken
 d
 . If this directive is missing, it means that iptable
 s
 is the only option. To see all effective rules:

	
On older systems:

	
iptables -v
 L
 or

	
iptables -
 S

	
On newer systems:

	
nft list rulese
 t
 or

	

nft list tables | grep firewalld

	
nft list table
 inet firewalld

	
nft list table
 ip firewall
 d
 , etc.

While you could make configuration changes using iptable
 s
 or nf
 t
 , that is a very bad idea. Likewise you should not install, enable, or start any non-default firewall services as conflicts between them and firewall
 d
 may occur with unexpected results.

You may interact with firewall configuration while firewall
 d
 is stopped by using firewall-offline-cm
 d
 . The options for this command are very similar to firewall-cm
 d
 . When using firewall-offline-cm
 d
 , please note that all changes will be permananent, as there is no runtime configuration when the service is not running.

network tools

There are lots of useful tools for network diagnostics. To test connectivity we have pin
 g
 , arpin
 g
 , tracerout
 e
 , and tracepat
 h
 .

To ping a computer at 10 second intervals 4 times:

ping -i 10 -c 4 192.168.122.123

PING 192.168.122.123 (192.168.122.123) 56(84) bytes of data.

64 bytes from 192.168.122.123: icmp_seq=1 ttl=64 time=0.246 ms

ICMP, the protocol that pin
 g
 relies on is frequently filtered or ignored. Within a subnet arping
 can be used instead. Note that it will not work across a router.

arping 192.168.122.123

ARPING 192.168.122.123 from 192.168.122.139 eth0

Unicast reply from 192.168.122.123 [52:54:00:6F:82:05] 2.323m
 s

traceroute
 and tracepath
 perform similar functions, attempting to map the full route to a remote computer. They use slightly different methods to do this: tracerout
 e
 by default uses ICMP packets, tracepat
 h
 uses UDP. There are other small differences: some features of tracerout
 e
 are only available to root; tracerout
 e
 is not typically installed by default; and tracepat
 h
 will return an MTU value for the entire path.

traceroute www.google.com

traceroute to www.google.com (64.233.185.105), 30 hops max, 60 byte

1 gateway (192.168.122.1) 0.407 ms 0.350 ms 1.261 ms

2 192.168.208.1 (192.168.208.1) 3.919 ms 3.499 ms 3.317 ms

tracepath www.google.com

1?: [LOCALHOST] pmtu 1500

1: gateway 0.251ms

2: 192.168.208.1 2.261ms

There are several ways to query and test DNS resolution: di
 g
 , hos
 t
 , nslooku
 p
 , and resolvect
 l
 . Most of these are part of the bind-util
 s
 package which must be installed separately. To find the mail exchangers (MX records) for gmail.com, by asking a google.com nameserver:

dig @ns1.google.com gmail.com MX

For an interactive tool, use nslooku
 p
 (output has been truncated in these examples):

nslookup

> set type=NS

> google.com

google.com nameserver = ns1.google.com.

google.com nameserver = ns3.google.com.

> server ns1.google.com

> set type=MX

> gmail.com

Server: ns1.google.com

Address: 216.239.32.10#53

gmail.com mail exchanger = 40 alt4.gmail-smtp-in.l.google.com.

gmail.com mail exchanger = 20 alt2.gmail-smtp-in.l.google.com.

For a simple name to address or address to name resolution, use hos
 t
 :

host gmail.com
 or

host 192.168.122.123

Another way to do this is with resolvect
 l
 , which if issued with no arguments will show current DNS configuration

resolvectl query google.com

google.com: 64.233.185.113

 64.233.185.10
 0

To explore and see the state of sockets and connections to a computer you can use netsta
 t
 or s
 s
 . In general s
 s
 is preferred; netsta
 t
 has been deprecated and will no longer be maintained. By itself s
 s
 will display all sockets, including the unix-family sockets, shown as u_st
 r
 and u_dg
 r
 ,used for inter-process communication. While sometimes useful, it is normal to restrict the output down a bit. To display all tcp and udp listening ports except ssh:

#ss -tu state listening sport != :ssh

To show only the ssh ports, and to add PID, memory, and SELinux information is this:

ss -tplm src :ssh

To continuously display connections to the web server from a specific network:

watch -n 5 "ss \(sport = :http or sport = :https \) dst 192.168.0.0/16 "

Every 5.0s: ss \(sport = :http or sport = :https \) dst 192.168.0.0/16 Wed

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

tcp ESTAB 0 0 [::ffff:192.168.122.139]:http [::ffff:192.168.122.1]:40286

tcp FIN-WAIT-2 0 0 [::ffff:192.168.122.139]:http [::ffff:192.168.122.1]:40284

There are several ways of interacting with URL/URI based resources (like the web): cur
 l
 , wge
 t
 , elink
 s
 , and lyn
 x
 . These will be addressed in the section devoted to http
 d
 .

There are also some more advanced tools that are beyond the scope of this course, but which you should at least be aware exist. These can be very useful, but need knowledge, consideration, and possibly approval from your security team before use:

	
nca
 t
 – easy provider of network connectivity

	
tcpdum
 p
 – wire-level level listener/parser

	
nmap
 – network exploration tool

Module 12: Remote Access

ssh

ss
 h
 is a replacement for insecure shell protocols such as telne
 t
 , rlogi
 n
 , and rs
 h
 , which should no longer be used under any circumstances. It allows the secure passing of credentials and an encrypted channel between machines. It also provides the underlying protocol for secure copy protocol (
 sc
 p
) and secure FTP (
 sft
 p
).

Improperly configured ss
 h
 can be a very large security hole. To configure it correctly:

	
In /etc/ssh/sshd_config

	Uncomment and/or change:

Protocol 2
 ## and only 2

PermitEmptyPasswords no

PermitUserEnvironment no

GSSAPIAuthentication no

ClientAliveInterval 600

ClientAliveCountMax 0

IgnoreRhosts yes

PrintLastLog yes

PermitRootLogin no

IgnoreUserKnownHosts yes

KerberosAuthentication no

StrictModes yes

Compression delayed
 ##(or no)

	Add:

HostbasedAuthentication no

Ciphers aes128-ctr,aes192-ctr,aes256-ctr

MACs hmac-sha2-256,hmac-sha2-512

banner=/etc/issue ## insert your banner in /etc/issue

	Leave at default:

UsePrivilegeSeparation sandbox

X11Fowarding yes

	In /etc/bashr
 c
 add a line: TMOUT=60
 0

	Find and remove any file with the name *.shos
 t
 , *.rhos
 t
 , or *hosts.equi
 v
 .

	

Check permissions on the host keys:

	
chmod 0644 /etc/ssh/*.key.pub

chmod 0600 /etc/ssh/ssh_host*key

	

Add the following line in an appropriate
 audit.rules
 file:

	
-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F perm=x -F auid>=1000 -F auid!=4294967295 -k privileged-ssh

	This is correct for EL7, for EL8 use auid!=unse
 t
 , rather than auid!=4294967295.

Use of ss
 h
 is simple: # ssh
 user@remotehos
 t

ssh-keygen, ssh-copy-id

You can also perform fully certificate-based logins. This adds an additional layer of security, and has the advantage of allowing the use of different locally stored passwords on each machine, without having to keep track of them individually.

To do this correctly the source user and destination user must exist on both machines – and should have the same UID. If the UID is used by another user on the destination machine, there is a possibility of conflict. To avoid this, it is best practice to specify UID and GID when creating users. This also avoids the possibility of reuse of UID in the case of a deleted user.

To use certificate-based ss
 h
 , you must first create a key:

#
 ssh-keyge
 n

Follow the prompts. Then copy the key to the remote server:

ssh-copy-id -i
 /path/to/key user
 @
 remotehos
 t

You can now log in using the key, rather than the password:

ssh -i
 /path/to/key
 user
 @
 remotehost

If you will always use the same username and key for connection to a given destination, add the following lines to ~/.ssh/config:

Host
 destination.server

User
 username

IdentityFile
 /path/to/key

This allows connection to the specified host without having to supply a username or key.

The permissions and ownership of keys should be checked. Private keys should be 60
 0
 ; public 64
 4
 . Both should be owned by the user and the users personal group.

If you wish to unlock a passphrase protected key for the duration of a session:

eval $(ssh-agent); ssh-add
 /path/to/key

For ease of use, this can be aliased in .bashr
 c
 .

scp

As mentioned, you can also use the ss
 h
 framework to transfer files using sc
 p
 . This allows secure and simple transfer between hosts, without requiring the configuration of an ftp server. You can even use certificates. The basic invocation is simple:

scp -
 i
 /path/to/key localfile user
 @
 remotehos
 t
 :
 /path/remotefile

It will accept wildcards such as /path/*.con
 f
 , and can recurse entire directory trees with -
 r
 .

sftp

If you want more interactivity than is provided by sc
 p
 , use sft
 p
 . The sftp-server is a subsystem of ssh
 d
 . By default it is enabled and configured by the following line of sshd_confi
 g
 :

Subsystem sftp /usr/libexec/openssh/sftp-serve
 r

This allows system-wide inbound sftp rights to any authenticated users controlled by standard permissions, of course.

If you wish to limit access for certain users (in this example the group sftp-user
 s
), you can make them capable of only using sft
 p
 , not ss
 h
 . This is done by replacing the Subsystem line in sshd_confi
 g
 with

Subsystem sftp internal-sftp

and appending

Match Group sftp-users

ForceCommand internal-sftp

Restart ssh
 d
 after making changes.

To restrict those users further still, such that they can only see a single directory add

ChrootDirectory /sftp/%
 u

The %
 u
 will be replaced with the username upon login.

Then create a directory for that user: /sftp/
 username
 /hom
 e

chow
 n
 the home directory only
 (not the path above it) to user:sftp-user
 s
 .

cockpit

EL7/8 has a web interface known as cockpi
 t
 . The cockpit interface provides an easy way to accomplish some of the more common administrative tasks, as well providing a terminal for standard command-line access. It is typically installed by default on EL8, in some EL7 versions it must be manually installed. To use cockpi
 t
 :

firewall-cmd --permanent --zone=public --add-service=cockpit

firewall-cmd --reload

systemctl enable --now cockpit.socket

If you have a web server certificate it can be placed in /etc/cockpit/ws-certs.d
 /

You will notice that we enabled and started cockpit
 .socke
 t
 , not cockpit
 .servic
 e
 . In an effort to be as lightweight as possible, cockpit.servic
 e
 will not run until called by cockpit.socke
 t
 . An ss -tlpn
 will show that the listener for port 9090 is system
 d
 . When a user connects, system
 d
 will start the service. It will exit after 90 seconds of inactivity.

Browse to https://
 hostname-or-ip
 :909
 0
 and log in as a user capable of using sud
 o
 , checking the "Reuse my password" box if you wish to avoid prompting for reauthentication.

vsftpd, lftp

Use of FTP is generally discouraged, as it is no longer considered secure. But there are times when it is the right solution; such as when providing an appropriately firewalled software repository for internal use, providing kickstarter files for unattended installation, or when making large files available to the public.

The standard ftp server for EL7/8, vsftp
 d
 , is not installed by default. When installed it will create the three units in /usr/lib/systemd/syste
 m
 . For a simple installation, you will only want to enable vsftpd.servic
 e
 ; the other units are templates for advanced configuration using multiple .con
 f
 files. The configuration file is /etc/vsftpd/vsftpd.con
 f
 . Relevant options are:

	
anonymous_enabl
 e
 – set to N
 O
 unless needed

	
write_enabl
 e
 – set to N
 O
 unless needed

	
anon_upload_enabl
 e
 – default N
 O
 . Also enforced by SElinux booleans

	
ftpd_banne
 r
 – leave commented out instead use banner_file

	
banner_fil
 e
 – point to /etc/issue

	
listen_ipv
 6
 – slightly deceptive, as this enables both IPv4 and 6

	
ssl_enabl
 e
 – a pain to configure and affected by the several flaws, use sftp instead

	
delay_failed_logi
 n
 – if allowing authenticated connections, set this to 10 or more.

Before starting the service, check permissions and SELinux context on /var/ftp
 /
 . This is the default directory for anonymous users. Anonymous users are logged in as user ft
 p
 . To change the default directory, change the ft
 p
 user’s home directory. You will also need to add the ftp servic
 e
 to the appropriate firewall zone, which should be as restrictive as possible.

The usual ftp client for EL7/8 is lft
 p
 , which supports protocols beyond ftp, including http. The common syntax is lftp
 [user@]hostnam
 e
 . Many commands (such as pu
 t
 and ge
 t
) are retained from older ftp clients. Others such as ll
 s
 , have been replaced with the syntax !l
 s
 , where the !
 invokes the local shell. The one exception to this lc
 d
 which is the only way to change the local directory.

httpd, apachectl

Providing simple web services is a fairly common administrative task. Advanced configuration needs and tasks vary wildly based on site and application specifics, and are beyond the scope of this course. To get a basic web server running on EL7/8:

	
Install the Apache webserver: httpd

	If you wish to use authentication, httpd-tool
 s
 is required

	
httpd-manua
 l
 will place documentation for Apache at http://localhost/manua
 l

	
Create a file /var/www/html/index.html

	otherwise /etc/httpd/conf.d/welcome.con
 f
 will display

	Add the http service to the firewall:

firewall-cmd --zone=public --add-service=http --permanen
 t

firewall-cmd --reload

	Enable but don't start the service:

systemctl enable httpd.servic
 e

	
Start the service:

apachectl start

	The apachect
 l
 tool is a wrapper for systemct
 l
 . It allows graceful shutdown and restart of Apache, preventing unwanted user disconnection. It also tracks down and kills errant child processes.

The primary configuration file for Apache is /etc/httpd/conf/httpd.con
 f
 . The options contained within it are called directives. The quick reference guide to the directives is over 30 pages long, and configuration can be quite complex, but some relevant directives include:

	
Liste
 n
 – This should have both an IP and port.

	
DocumentRoot
 – the base directory for service.

	
To prevent DoS attacks the following should be set:

	
LimitRequestFieldSize 819
 0
 – or less

	
LimitRequestLine 819
 0
 – or less

	
LimitRequestBody
 1
 – or more

	
LimitRequestFields
 1
 – or more

	
KeepAliveTimeout 1
 5
 – or less

	
KeepAlive O
 n
 .

	
Timeout 30
 0
 – or less

	All <Directory/
 >
 entries should have a directive AllowOverride None

After making changes to the configuration files:

	Verify the validity with

apachectl configtes
 t

	Reload using

apachectl gracefu
 l

curl, wget, lynx, elinks

There are times when you will need to get content from a webserver, but only have a command line. There a few tools that you can use to solve this problem. cur
 l
 and wge
 t
 both work from the command line and can be encapsulated in scripts. Both support ftp, http, and https protocols as well as cookies and POST requests, but there are some differences:

	

cur
 l

	acts like ca
 t
 for network sources

	output can be piped

	will not recurse a website

	supports many protocols including SFTP, SCP, TFTP, POP3, IMAP, and LDAP

	provides automatic decompression for HTTP deflate and gzip

	

wge
 t

	output goes into a file or files

	can recurse a website, creating a directory structure matching that of the source

	will automatically resume if a connection is interrupted

Both cur
 l
 and wge
 t
 have their place and are exceedingly useful at times, but to actually browse the web, you need something that understands html. For that you need lyn
 x
 or elink
 s
 , which are text interface browsers. While they don't support all the features of a graphical browser, they are useful. They also can be used to verify the accessibility features of a website. Which one is available to you depends on your version of EL: Beginning with EL8 lyn
 x
 is not available, and availability of elink
 s
 for EL8 has also been variable.

Navigation in either is similar:

	
spac
 e
 / shift-spac
 e
 – page down / up

	
Inser
 t
 / Delet
 e
 – scroll up / down

	
u
 p
 / dow
 n
 – move between hyperlinks

	
righ
 t
 – select link

	
lef
 t
 – go back

	
ES
 C
 – show menus

	
q
 – quit

NFS

NFS (Network File System) is a file sharing protocol common to Unix-like operating systems. Like many other network protocols, NFS was not designed with security in mind. Older versions (v2 and v3) did not support ACLs, SELinux labeling, or Kerberos integration. They also required multiple services and ports requiring more overhead and a large potential attack surface.

Modern NFS (v4) addresses many of these problems. It uses a single service and port (2049), runs over TCP, and can be integrated with Kerberos authentication. However it still should not be considered secure. It should only be used on enclaved networks. The default version of NFS in EL8 is NFSv4.2. Support for versions 2, 3, and 4 is available in EL7, while EL8 supports only versions 3 and 4.

The software package for both server and client is nfs-util
 s
 . This package provides everything needed to serve all supported versions of NFS and to access exported filesystems as a client.

To create an NFS server:

Add the service to the default zone (or an appropriate limited zone):

firewall-cmd --add-service nfs --permanent

firewall-cmd --reload

Update the configuration file /etc/nfs.con
 f
 :

 [nfsd]

 vers2=n

 vers3=n

This causes nfs
 d
 to not answer requests for NFS versions 2 and 3, but won't prevent the services that back those versions from starting. To do that, mas
 k
 the unwanted services and start NFS:

systemctl mask --now rpc-statd.service \

rpcbind.service rpcbind.socket

systemctl enable --now nfs-server.service

Define which filesystems we wish to share (or export), and which hosts and networks they will be shared with. This is done in the /etc/export
 s
 file. Each line represents an exported file system and will contain:

	
local filesystem to export
 – /home, /svr/share, /var/pub

	
hostname to share with
 – client, client.local, www.site.not

	
network to share with
 – 192.168.0.0/24, 172.16.0.0/28 (note the slash notation)

	

options
 :

	
r
 w
 – allow read and write access

	
sec
 =
 – define a list of allowable security flavors (sys:krb5:krb5i:krb5p)

	
syn
 c
 – do not reply to NFS request until a write has occurred

	
fsid=
 0
 – sets the “root” of the virtual file system in NFSv4

	
anonui
 d
 – set the system UID to be assigned to anonymous users

	
no_root_squas
 h
 – do not map UID 0 requests to
 anonymous

This is a sample /etc/export
 s
 file from the man page:

 / master(rw) trusty(rw,no_root_squash)

 /projects proj*.local.domain(rw)

 /usr *.local.domain(ro) @trusted(rw)

 /home/joe pc001(rw,all_squash,anonuid=150,anongid=100)

 /pub *(ro,insecure,all_squash)

 /srv/www -sync,rw server @trusted @external(ro)

 /foo 2001:db8:9:e54::/64(rw) 192.0.2.0/24(rw)

 /build buildhost[0-9].local.domain(rw)

Create an export, in this case allowing a one IP read/write access to the local directory /shar
 e
 :

cat /etc/exports

/share 192.168.238.73/32(rw,sync)

Now export (share) the file system with exportfs -v
 a
 . This command runs when

nfs-server.servic
 e
 starts or restarts on EL8, on EL7 it is called nfs.servic
 e
). It will export anything listed in the /etc/export
 s
 file.

exportfs –va

exporting 192.168.238.73/32:/share

We can verify the export with exportf
 s
 which will display the currently exported filesystems.

On the client install the nfs-util
 s
 package. Configuration is performed in /etc/nfsmount.con
 f
 which controls how NFS mounting operations are performed. There are dozens of options here. At a minimum set the default and required protocol to TCP, and the default and required NFS version to 4.

[NFSMount_Global_Options]

Defaultvers=4

Nfsvers=4

Defaultproto=tcp

Proto=tcp

We may now attempt a mount:

mkdir /netshare

mount 192.168.238.73:/share /netshare

mount -v | grep /netshare

192.168.238.71:/share on /netshare type nfs4 (rw,relatime,vers=4.2,rsize=524288,wsize=524288,namlen=255,hard,proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=192.168.238.73,local_lock=none,addr=192.168.238.71)

This can be automated by adding an entry to /etc/fsta
 b
 or by making a .moun
 t
 or .automoun
 t
 unit file. Either way note that what you will mount takes the form of remote.server
 :/
 director
 y
 and type is nf
 s
 .

NFS and Authentication

NFS uses two layers of permissions: those defined in the export options, and local file permissions on the server. By default, an NFS server relies on the client to provide UID/GID information for users accessing the share. The server will then determine local permissions based on the UID/GID of the accessing user using AUTH_SYS (same process used for local determinations). This leaves NFS servers vulnerable to spoofed UID/GID information, or host impersonation.

This weakness can be mitigated by implementing Kerberos authentication, which would allow authorization of both the server and the client, and, potentially, authorization of user accounts directly through that same system. Configuring NFS to authenticate via Kerberos would be ideal, but at the time of this writing there are issues with Kerberos integration on FIPS enabled systems. FIPS is mandatory on government systems. We expect these issues to be addressed in an upcoming minor release, and will update the material at that time.

Lacking Kerberos, administrators may choose to implement read-only exports, or rely on squashing to limit user interaction on shared filesystems. Squashing involves a series of options:

	
all_squas
 h
 – all access attempts are "squashed" to a single, typically unprivileged UID/GID

	
root_squas
 h
 – squash the root account, always

	
anonui
 d
 / anongi
 d
 – set the destination account and group for squashing

Again, NFS should not be considered a secure protocol. Certain configurations may, as we have shown, make it less insecure
 ; sensitive data should not be shared over NFS unless risk has been assessed and mitigated through other means.

x2go

While most servers do not require and should not have graphics installed, there are some applications which require a GUI. One way to access a graphical desktop is by using X2go. At current it is only supported on EL7, as some dependencies are missing from the EPEL for EL8. It also does not play well with the gnom
 e
 desktop, so an alternative desktop environment must be installed. It is inherently more secure than vnc as it uses ssh as its primary transport.

To configure the X2go server:

	In /etc/ssh/sshd_confi
 g
 :

 X11Forwarding yes

 AllowTcpForwarding yes

 X11UseLocalhost yes

 X11Displayoffset 10

	
yum -y install x2goserver-xsession

	
yum -y groupinstall “Xfce
 ”
 or ”KDE Plasma Workspaces”

	
systemctl set-default graphical.target

	
reboot

or isolate to multiuser.targe
 t
 , then to graphical.target

The client simply needs x2goclien
 t
 installed. The Windows client is at

https://code.x2go.org/releases/binary-win32/x2goclient/release

vnc

Another way to access a GUI is by using the vnc (Virtual Network Computing) protocol. This is not a secure protocol and should not be used on any public facing network.

If you are not
 running in FIPS mode and you want to simply share a single user's desktop, you can run the vnc server built into the gnom
 e
 desktop suite. This is done by simply enabling sharing of a user's desktop in the desktop settings. This will run vino-serve
 r
 on port 590
 0
 .

If you are running in FIPS mode (and you should be), you must use tigervnc-serve
 r
 . The configuration is involved and diverges substantially between EL7 and EL8.

The EL8 installation is interesting in that it uses a user-owned systemd.uni
 t
 . These can be useful for things like custom mounts and services dedicated to a particular user. User unit files must be WantedBy=default.targe
 t
 .

To implement vnc:

	Ensure you have graphics installed, and have graphical.targe
 t
 set as your default

	Install
 tigervnc-serve
 r

	
Open the firewall:

	
firewall-cmd --permanent --add-service=vnc-serve
 r

	
firewall-cmd --reloa
 d

On EL7:

	
Each user will need their own unit file, as each user's instance runs as a separate service:

	

vi /usr/lib/systemd/system/vncserver@\:
 XXX
 .servic
 e

	
Where XX
 X
 is a number, such as 1
 .

	

The contents should be:

[Unit]

Description=Remote desktop service (VNC)

After=syslog.target network.target

[Service]

Type=forking

User=
 <USER>

Group=
 <USER>

Clean any existing files in /tmp/.X11-unix environment

ExecStartPre=/bin/sh -c '/usr/bin/vncserver -kill %i > /dev/null 2>&1 || :'

ExecStart=//usr/bin/vncserver %i

PIDFile=/home/
 <USER>
 /.vnc/%H%i.pid

ExecStop=/bin/sh -c '/usr/bin/vncserver -kill %i > /dev/null 2>&1 || :'

[Install]

WantedBy=graphical.target

	Replace <USER
 >
 with the desired username.

	Reload using # systemctl daemon-reloa
 d

	
Set the user’s vnc password:

su –
 <user>

vncpasswd

	This must be done as the user as it creates a file in the user's home directory

	Passwords must be at least 6 characters,
 and unique

	Skip the view-only password

	Exit out of that user's session

	Start and enable the session:

systemctl enable --now vncserver@\:1.servic
 e

On EL8:

All steps must be run as the target user

	

ss
 h
 to the server using the desired username

	do not
 su -

 It will not work

	
Set the user's vnc password:

vncpassw
 d

	Passwords must be at least 6 characters, and unique

	Skip the view-only password

	Do not
 exit from the users session

	
[optional] If you want to customize the user's startup, create a service just for them.

	
mkdir -p ~/.config/systemd/user

	
cp /usr/lib/systemd/user/vncserver@.service \

 ~/.config/systemd/user/

	
Enable the vnc server

	

systemctl --user enable vncserver@:
 XXX
 .service --now

	
where XX
 X
 is a unique number for that users session

	
Make the user’s login persistent across reboots.

	

loginctl enable-linger

	This allows systemd to start the server as the user at boot

Connect to hostname:XXX where XXX is the session number for that user.

If you encounter problems with the lock-screen resetting when trying to enter a password turn off screen lock for that user. This is a security risk, but is currently the only way to make this work. This must be done in the GUI, either in a terminal started from the GUI:

gsettings set org.gnome.desktop.lockdown disable-lock-screen false

or under System Tools > Settings > Privacy.

If you wish to be more secure, create an ssh tunnel from your local machine to the server:

ssh -C -L 590
 X
 :localhost:590
 X
 serve
 r
 where X
 is the session number.

Then attach with your vnc client to localhost:
 X
 .

Module 13: SELinux

SELinux is a security module for the Linux kernel, which provides a means of implementing Mandatory Access Controls in a secure system. Access controls
 provide a method for preventing the use of a resource by an unauthorized party or in an unauthorized manner.

In Discretionary Access Control (DAC)
 models, users are given control over the resources that they own. Standard Linux permissions and ACLs are discretionary access controls. While this model can prevent unauthorized users and processes from reading, writing, or executing disallowed files, it does not provide way to prevent a user or process from performing undesirable actions against resources they would otherwise be permitted to control.

For example, DAC cannot prevent a user from giving other users access to or even ownership of files they own. Similarly, DAC cannot prevent processes a user spawns from accessing or modifying files accessible to the invoking user. If a process running with root privileges is hijacked by a malicious actor, the entire system is at risk.

Mandatory Access Control (MAC)
 models provide a way to resolve these issues. The SELinux implementation of MAC accomplishes this by labelling and classifying the resources and participants on a system, and specifying rules for if and how they may interact. These rules cannot be violated by any user or process. Administrators may change policies or place SELinux into permissive mode, but they are still subject to the SELinux enforcement rules that they create.

SELinux does not replace DAC permissions; it is provides controls beyond them. It cannot grant permissions that DAC permissions have denied. DAC is always consulted first. SELinux may, or may not, apply additional controls. The following occurs every time a user-space program asks the kernel to do something:

	System Call – a command is issued.

	Error Check – is it a valid command?

	DAC (Permissions / ACLs) – is the user allowed to read, write, execute as needed?

	MAC (SELinux) – is this allowed under the security context?

	Return – execute command, or exit with error, possibly logging.

The central mechanism of SELinux is Type Enforcement. Type Enforcement controls interactions between different types of system resources. Every resource in SELinux will be assigned a type
 . These resources could be processes (which are often referred to as Subjects) or files, directories, ports, etc. (often called Objects, or “those things that the Subjects interact with and manipulate”).

Here is some basic terminology that will help us understand how SELinux protects a system:

	
OBJECT
 – a system resource; the target of interaction by SUBJECTS. These can be files, devices, ports – practically any sort of system resource.

	
SUBJECT
 – an active component, something that attempts to interact with OBJECTS and other SUBJECTS. In other words, these are processes.

	
TYPE
 – a way of categorizing resources on a system. When we assign a type to a process, we would say that we have assigned that process to a DOMAIN. When we assign types to OBJECTS, we simply retain the designation of “type”.

	
DOMAIN
 – a context in which processes are executed. Policy rules are applied to these.

	
POLICY
 – the driver for SELinux enforcement. Policy modules can be created which contain rules and definitions for types and domains (and more). These rules can take a variety of forms, from granting or revoking access and privileges to controlling transitions between domains, to controlling object type transitions inside a domain, to controlling auditing behavior, etc.

	
SECURITY CONTEXT
 – made up of an SELinux User, a role, a type, and a sensitivity/classification level in a colon delimited label. Here is a label showing user=
 system_
 u
 , role=
 object_
 r
 , type=
 var_
 t
 , and sensitivity=
 s
 0
 :

system_u:object_r:var_t:s0.

	
SELINUX USER
 – a class of user, such as sysadm_
 u
 , staff_
 u
 , or system_
 u
 . These aren’t classic Linux users. Rather, classic Linux users (and every other resource on the system) would be assigned to one of these classes. If Role Based Access Control (RBAC
) is not being implemented, these aren’t typically an object of consideration; instead, processes run under system_
 u
 , and users default to unconfined_
 u
 . For STIG compliance, normal users should be confined to user_
 u
 , and administrators should be confined to either sysadm_
 u
 or staff_
 u
 .

Enforcement

SELinux configuration information is stored in the file /etc/selinux/config.

It can be configured in three states. They are:

	
Enforcin
 g
 – SELinux is active and enforcing policy, default, required by STIG

	
Permissiv
 e
 – SELinux logs policy exceptions, but does not enforce

	
Disable
 d
 – SELinux is disabled in the kernel and cannot run

The type of enforcement is also configured here

	
Targete
 d
 – default, important processes are protected

	
Minimu
 m
 – like targeted, with a smaller selection of targets

	
ML
 S
 – Multi Level Security

The first option sets the state that SELinux will be in at boot. SELinux operates in one of two modes, which it can swap between upon request: enforcin
 g
 and permissiv
 e
 . When enforcin
 g
 SELinux monitors all confined entities, logs policy violations, and prohibits any actions that are not specifically allowed by policy. When permissive it will monitor confined entities and log infractions, but will NOT prohibit actions from occurring (helpful for diagnosing SELinux behaviors). Regardless of the settings in /etc/selinux/confi
 g
 , SELinux will not run if disabled on the kernel command line.

We can check the current mode with the getenforc
 e
 command, and transiently change it using setenforc
 e
 . The options for setenforc
 e
 can either be numeric (
 1
 , 0
) or a word (
 enforcin
 g
 , permissiv
 e
). Changes made with setenforc
 e
 will not persist through a reboot:

setenforce 1

getenforce

Enforcing

setenforce permissive

getenforce

Permissive

SELinux cannot be disable
 d
 using setenforc
 e
 . To disable SELinux entirely, we must alter /etc/selinux/confi
 g
 and reboot. This prevents the SELinux kernel module from being loaded at all. SELinux should never be disable
 d
 on a government system and it should only be run in permissiv
 e
 mode for diagnostic and recovery purposes. If SELinux is not enforcin
 g
 , any newly created files or other objects will NOT receive a security context label. When SELinux is functioning, it expects these values to be present. When SELinux is returned to enforcin
 g
 on a system which had been operating in a permissiv
 e
 or disable
 d
 state, serious errors may occur. To prevent this create a file in the root directory: /.autorelabe
 l
 . This forces SELinux to reapply the correct labels at the next boot.

The second option sets the SELINUXTYP
 E
 (or Enforcement Type). This defines the behavior of SELinux when it is enforcing. The default is targete
 d
 , which means that most common system services will operate in a confined domain. If set to minimu
 m
 a smaller set of services will be confined; ML
 S
 is for compartmentalized secure systems.

User Classes and Roles

SELinux operates by confining or restricting actions on a secure system. Any class, type, role, or domain created by policy will operate in this way, with subjects and objects being confined at greater or lesser levels of restriction.

Each user class will have access to one or more roles. A system user assigned to a user class can use any of the roles available to the class, but only inhabit a single role at any given time. The active role can be switched using the newrol
 e
 command. These roles, in turn, have access to domains, and the domains have access to types as defined by policy.

When using the default targete
 d
 policy, the user class unconfined_
 u
 will be the default class for all interactive users on the system. This class has access to the unconfined_
 r
 role which is, as the name suggests, not confined by SELinux. In other words, this user class is only restricted by other security mechanisms available in the operating system, such as permissions or individual service configurations. The processes this user invokes may be confined, or the services this user interacts with - but the user class itself will not be. For example, an unconfined user may be given permission to use sud
 o
 or to run commands with SUID set; SELinux would not prevent this.

We can get a list of user classes and the logins assigned to them using the semanag
 e
 command:

semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023

root unconfined_u s0-s0:c0.c1023

system_u system_u s0-s0:c0.c1023

semanage user -l

SELinux User SELinux Roles

guest_u guest_r

root staff_r sysadm_r system_r unconfined_r

staff_u staff_r sysadm_r system_r unconfined_r

sysadm_u sysadm_r

system_u system_r unconfined_r

unconfined_u system_r unconfined_r

user_u user_r

xguest_u xguest_r

Above, we can see that the _default
 _
 user class is unconfined_u. If a system user has no specifically defined user class, this entry declares what context the user will receive.

From a STIG perspective, there are three of classes to be dealt with:

	
sysadm_u
 - has access to only the sysadm_
 r
 role. This class can use sud
 o
 and s
 u
 . It is restricted from login via GUI or ss
 h
 by default, though this can be altered with booleans:

setsebool –P ssh_sysadm_login 1

	
staff_u
 - is assigned the staff_
 r
 , sysadmin_
 r
 , system_
 r
 , and unconfined_
 r
 roles. This class can perform any tasks that sysadm_
 r
 could, with the exception of calling s
 u
 . staff_
 u
 is not restricted from GUI or ss
 h
 login by default, as sysadm_
 u
 is.

	

user_u
 - is assigned only the user_
 r
 role. This class has access to GUI/terminal login and networking and can execute scripts in his/her home directory. Cannot use s
 u
 or sud
 o
 .

	In EL7 the range flag –
 r
 must be passed to semanag
 e
 in order to place a user in the correct mls context for user_u

semanage login -a -s user_u
 -r s0
 username

Below are a set of commands and tips that can help configure your system to standard:

	We can check user classes and the roles assigned them with

semanage login -
 l
 and #
 semanage user -
 l

	Users can be added to a user class with

#
 semanage login -a -s
 userclass username

	Once assigned, the userclass can be changed with

semanage login -m -s
 userclass username

	Groups of users can be added as well by using a percent %

semanage login –a –s
 staff_u %wheel

	New users can be confined at time of creation with

#
 useradd –Z
 userclas
 s

	The STIG mandates that all administrators be assigned to sysadm_
 u
 or staff_
 u
 , and that all nonadministrators be assigned user_
 u
 . To change the default user mapping to user_u

#semanage login -m -S targeted -s “user_u” -r s0 __default_
 _

Types and Policy

Every resource on an SELinux system will be assigned a type. We can determine the type assigned to a resource by examining the label applied to it. Labels are a representation of the security context assigned to a resource.

From our perspective the most important component in these labels is the type (such as unconfined_
 t
 , or kernel_
 t
). Labels are comprised of five colon-delimited sections, the third of which is the type. Labels can be applied to files, processes, even users. In many commands, the standard option, -
 Z
 , which will cause these labels to be displayed.

ls -Z /var

system_u:object_r:acct_data_t:s0 account

system_u:object_r:public_content_t:s0 ftp

id -Z

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

ps –eZ

LABEL PID TTY TIME CMD

system_u:system_r:init_t:s0 1 ? 00:01:38 systemd

system_u:system_r:kernel_t:s0 2 ? 00:00:01 kthreadd

ps -eo label,args

LABEL COMMAND

system_u:system_r:init_t:s0 /usr/lib/systemd/systemd --switched-

system_u:system_r:kernel_t:s0 [kthreadd]

SELinux policies consist primarily of rule sets which define allowed interactions between types. We can inspect these rules with the sesearc
 h
 command. The invocations of sesearc
 h
 below use the following options:

	
--rul
 e
 – type of rule sought:
 allo
 w
 ,
 typ
 e
 ,
 neverallo
 w
 ,
 audi
 t
 ,
 dontaudi
 t
 , etc.

	
-
 s
 – source domain: the domain attempting to interact

	
-
 t
 – target: the domain or object being interacted with

	
-
 c
 – class of object:
 fil
 e
 ,
 di
 r
 ,
 socke
 t
 ,
 filesyste
 m
 , etc.

	
-
 p
 – permission type:

 rea
 d
 ,
 writ
 e
 ,
 ioct
 l
 ,
 creat
 e
 , etc.

For this example, we'll use the httpd_
 t
 type (assigned to the Apache webserver daemon, http
 d
) and the httpd_sys_content_
 t
 type (the generic web content type assigned to many of the directories the http
 d
 daemon is expected to interact with or serve content from).

We can ask what permissions the httpd_
 t
 domain has against httpd_sys_content_
 t
 using the sesearc
 h
 command:

sesearch --allow -s httpd_t -t httpd_sys_content_t

Here, we've asked for rules that allow a source type of httpd_
 t
 to interact with a target type of httpd_sys_content_
 t
 in some way. This returns more than twenty rules. Let's examine one of the results in detail:

allow httpd_t httpd_sys_content_t:dir { getattr ioctl lock open read search };

This states that a resource from security context httpd_
 t
 is allowed to interact with resources of type httpd_sys_content_
 t
 and kernel object class directory in the following ways: retrieving attribute information (file permissions and the like), manipulating ioctl, locking files, opening the directory, reading, and searching directory contents.

Using the seinfo command, we can get more information about our current policy:

seinfo

Statistics for policy file: /sys/fs/selinux/policy

Policy Version: 31 (MLS enabled)

Target Policy: selinux

Handle unknown classes: allow

 Classes: 129 Permissions: 452

 Sensitivities: 1 Categories: 1024

 Types: 4934 Attributes: 251

 Users: 8 Roles: 14

 Booleans: 327 Cond. Expr.: 376

 Allow: 112614 Neverallow: 0

 Auditallow: 162 Dontaudit: 10294

 Type_trans: 244549 Type_change: 74

 Type_member: 35 Range_trans: 6015

 Role allow: 39 Role_trans: 425

 Constraints: 71 Validatetrans: 0

 MLS Constrain: 72 MLS Val. Tran: 0

 Permissives: 0 Polcap: 5

 Defaults: 7 Typebounds: 0

 Allowxperm: 0 Neverallowxperm: 0

 Auditallowxperm: 0 Dontauditxperm: 0

 Initial SIDs: 27 Fs_use: 33

 Genfscon: 105 Portcon: 627

 Netifcon: 0 Nodecon: 0

In the output above, we can see that our current policy accounts for 129 classes (
 servic
 e
 , fil
 e
 , socke
 t
 , di
 r
), with 452 associated permissions (
 rea
 d
 , ioct
 l
 , searc
 h
 , loc
 k
). Further, we can see that there are 4934 known types (
 httpd_
 t
 , kernel_
 t
 , var_
 t
) and 112,614 Allow rules like the one we examined above.

This policy is loaded by default. Administrators typically do not need to create new rules or types. Instead, we can focus on properly applying these predefined types to resources on our systems and letting the policy work for us.

Security Context Labels

When SELinux is configured with the default targete
 d
 policy, most common daemons and their associated files and directories are confined. This means that security contexts have been created for them, labels have been applied, and rules have been written against them.

In EL7/8 http
 d
 has a great deal of default policy. We can examine the context of the default document root for http
 d
 :

ls -dZ /var/www/html

system_u:object_r:
 httpd_sys_content_t
 :s0 /var/www/html

The type listed here, httpd_sys_content_
 t
 , is one for which we've already discovered rules in our current policy. The effect here is that, if http
 d
 is configured to use its default document root (
 /var/www/htm
 l
), SElinux will allow the daemon to interact with the files and directories needed to serve web content. But what if we wished to serve content from some other directory? Let's create a new directory, /we
 b
 , and examine the resulting context:

ls -dZ /web

unconfined_u:object_r:
 default_t
 :s0 /web

The type defined for /we
 b
 is default_
 t
 . This is, as the name suggests, a default type that applies to new files and directories which are created in locations without predefined contexts. When new files are created, SELinux checks a set of context files to determine how they should be labeled.

We can get a list of all the file contexts that SELinux knows about using semanag
 e
 . We'll limit our discussion to one result:

semanage fcontext -l | grep /var/www

/var/www(/.*)? all files system_u:object_r:httpd_sys_content_t:s0

The portion /var/www(/.*)
 ?
 is a regular expression. This particular expression is essentially matches /var/ww
 w
 and everything under it.

This is called a default file context.
 The default file contexts for every file in the targeted environment are located in the /etc/selinux/targeted/contexts/files
 /
 directory. Built-in contexts are in file_context
 s
 , custom ones are in file_contexts.loca
 l
 .

The /we
 b
 directory doesn't have an entry in these files, so it inherits the default context. Further, SELinux has no rules currently loaded which will allow httpd_
 t
 to interact with objects of type default_
 t
 , nor, as a security best practice, should it.

We can configure http
 d
 to serve content from /we
 b
 by editing the DocumentRoo
 t
 directive in httpd.con
 f
 and create a simple index.htm
 l
 there. With permissions and firewall exceptions accounted for, and SELinux in permissiv
 e
 mode, these are the results of a cur
 l
 operation:

curl localhost/index.html

this is a succes
 s

Let's place SELinux into enforcin
 g
 mode and try that again.

setenforce 1

curl localhost/index.html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>403 Forbidden</title>

</head><body>

<h1>Forbidden</h1>

<p>You don't have permission to access /index.html

on this server.

</p>

</body></html>

When enforcin
 g
 SELinux prevents access. We can check our logs to get a better idea of what's happening. In /var/log/messages
 we find this line:

SELinux is preventing /usr/sbin/httpd from map access on the file /web/index.html. For complete SELinux messages run: sealert -l 3b1ca295-6c8b-482e-bb57-4890f60defc4

The command above translates to: “Fetch any AVC (Access Vector Cache – basically SELinux) messages related to the common name http
 d
 which occurred today, and only show the last entry. Also, please translate as many ID numbers as you can into the names of the things they represent.” The results are still somewhat dense, but present a significant improvement over the raw logs. From this, we can determine that:

	SELinux denie
 d
 an attempt by http
 d
 to interact with /web/index.html

	The source security context was: system_u:system_r:
 httpd_t:
 s0

	The target security context: unconfined_u:object_r
 :default_t:
 s0

We can confirm that our current policy doesn’t allow the httpd_
 t
 domain to access files of the type default_
 t
 . Further, we also know that SELinux should not block access to files with context httpd_sys_content_
 t
 , such as those in /var/www/htm
 l
 .

Our simplest solution is to alter the context of the /we
 b
 directory (and its contents) to match that of the /var/www/htm
 l
 directory. To do that, we will use semanag
 e
 :

semanage fcontext -a -t httpd_sys_content_t /web"(/.*)?"

The results of this operation will not immediately be apparent. The /we
 b
 directory and its contents will still retain their original labels. However, semanag
 e
 will now report our intended contexts, and /etc/selinux/targeted/contexts/files/file_contexts.loca
 l
 will contain an entry reflecting this change:

semanage fcontext -l | grep ^/web

/web(/.*)? all files system_u:object_r:httpd_sys_content_t:s0

cat file_contexts.local

This file is auto-generated by libsemanage

Do not edit directly.

/web(/.*)? system_u:object_r:httpd_sys_content_t:s0

To apply our intended contexts to the targeted files and directories, we will need to run restoreco
 n
 with a target of /we
 b
 using the –
 r
 (recurse) and –
 v
 (verbose) options. Then we'll create a new file inside this directory to verify that files are inheriting the proper contexts.

restorecon -rv /web

Relabeled /web from unconfined_u:object_r:default_t:s0 to unconfined_u:object_r:httpd_sys_content_t:s0

Relabeled /web/index.html from unconfined_u:object_r:default_t:s0 to unconfined_u:object_r:httpd_sys_content_t:s0

touch /web/test

ls -Z /web

total 4

unconfined_u:object_r:httpd_sys_content_t:s0 index.html

unconfined_u:object_r:httpd_sys_content_t:s0 test

To remove this custom context, pass the -
 d
 option to semanag
 e
 :

semanage fcontext -d "/web(/.*)?"

This removes the line from file_contexts.local
 ,
 but the changes will not be applied until we run restoreco
 n
 again.

A final note regarding file contexts: some directories defined in the default contexts contain many and various type definitions for the sorts of files that would logically be created inside of them. It may not be sufficient, therefore, to simply match the label of a top level directory like /we
 b
 to the label of /var/ww
 w
 .

In cases like these, we may use the concept of equivalency
 to resolve the disparity. We can use semanage to accomplish this:

semanage fcontext -a -e /var/www /web

restorecon -Rv /web

This tells SELinux to treat /we
 b
 as if it were /var/ww
 w
 for the purposes of labeling going forward.

Booleans

When files and directories are not set to a context that properly reflects their contents, SELinux will often prohibit actions against them. Defining and applying contexts can resolve these issues, but SELinux also prohibits certain actions as a matter of policy, rather than as the result of a labelling mistake.

In situations where otherwise desirable actions are being prohibited by policy, the only remedy is to alter the policy itself. This can be done in a variety of ways, from writing our own modules and compiling them directly, to using tools like audit2allo
 w
 which converts denials in a log into policy modules which allow the behavior. However, the simplest and most common way to alter loaded policy is with SELinux booleans.

SELinux booleans are like security toggle switches. These are common policy changes that operators might want to enable, and are provided so that we will not be required to create and apply policy modules (which may result in degraded security posture).

We can get a list of SELinux Booleans with #
 getseboo
 l
 or with #
 semanage boolean -
 l
 . The two commands are similar, but the semanag
 e
 version includes a description column.

Let's get a list of booleans that start with "nfs":

semanage boolean -l | grep ^nfs

nfs_export_all_ro (on , on) Allow any files/directories to be exported read/only via NFS.

nfs_export_all_rw (on , on) Allow any files/directories to be exported read/write via NFS.

nfsd_anon_write (off , off) Allow nfs servers to modify public files used for public file transfer services. Files/Directories must be labeled public_content_rw_t.

From this list, we'll choose nfs_export_all_r
 w
 for further exploration. The description supplied for this boolean is Allow any files/directories to be exported read/write via nf
 s
 . The (
 on, o
 n
) bit indicates that the boolean is currently on and is set to be on by default. We can use sesearc
 h
 to find out more about this boolean and the rules changes it effects.

sesearch -b nfs_export_all_rw –A

allow kernel_t non_security_file_type:dir { add_name getattr ioctl lock open read remove_name search write }; [nfs_export_all_rw]:True

<truncated>

Let's walk through the result:

	
allo
 w
 – allow

	
kernel_
 t
 – the source domain

	
non_security_file_typ
 e
 – the target, here an attribut
 e
 .

	
:di
 r
 – (kernel object class of dir, e.g. directories)

	
{add_name getattr ioctl lock open re
 <truncated>
 }
 ;
 – the permissions granted

	
[nfs_export_all_rw
]
 – the name of the boolean these rules are a part of

	
:Tru
 e
 – the state the boolean must be set to for the rules to take effect

The target section of this rule points to non_security_file_typ
 e
 , which is actually an SELinux attribut
 e
 rather than a typ
 e
 . An attribut
 e
 is a category that type
 s
 can be assigned to. In other words, the rule above takes effect whenever a domain of kernel_
 t
 targets anything with an attribute of non_security_file_typ
 e
 . We can get a list of the types this attribute has been assigned to with seinf
 o
 . This list is rather large:

seinfo -xa non_security_file_type | wc –l

2998/*9

There is a converse attribute, security_file_typ
 e
 , which we can more easily list:

seinfo -xa security_file_type

Type Attributes: 1

 attribute security_file_type;

 audit_spool_t

 auditd_etc_t

 auditd_log_t

 default_context_t

 dnssec_t

 file_context_t

 krb5_keytab_t

 random_seed_t

 selinux_config_t

 selinux_login_config_t

 semanage_store_t

 shadow_t

Here we see types that would be, as the name suggests, assigned to security related files such as the kerberos keytab, the shadow password database, SELinux configuration, and more.

When a boolean is toggled, its rulesets are loaded or unloaded from the active policy set. To toggle a boolean use setseboo
 l
 . Before doing this it is best to check the effects, as some booleans can pose substantial security risks. To permanently (
 -
 P
) set the boolean httpd_read_user_conten
 t
 to on:

#
 setsebool -P httpd_read_user_content 1

audit2allow

When all of the aforementioned techniques have been tried and tested, but SELinux issues still persist, there is a tool that we can use to resolve policy errors. This tool is called audit2allo
 w
 , and it should be used sparingly, if at all.

This is because audit2allo
 w
 will take, as input, AVC error messages from the audit log. It will then transform these error messages into policy modules which will allow the blocked behavior. The tool is so powerful, that it may take the entirety of /var/log/audit/audit.lo
 g
 as input, and generate a policy module which will allow all
 of the blocked behaviors.

cat /var/log/audit/audit.log | grep AVC | grep denied \

| audit2allow -o /test/source.te

Above, we used the -
 o
 option to generate an uncompiled, human readable source file. The extention .t
 e
 stands for Type Enforcement. As input we took all AVC denials in audit.lo
 g
 .

This has not yet been applied as policy. Before we can apply it, we need to compile the type enforcement file into a policy package (
 .p
 p
). This can be done using the .p
 p
 as a source by running mak
 e
 or checkmodul
 e
 . It is easier to generate the policy package file directly by using audit2allow -
 M
 .

cat /var/log/audit/audit.log | grep AVC | grep denied \

| audit2allow -M polfix

******************** IMPORTANT ***********************

To make this policy package active, execute:

semodule -i polfix.pp

We can then load it as suggested in the output, and unload it with #
 semodule -d polfix

One final thing worth noting: some SELinux rules prevent logging of activities to the audit log. This is not malicious behavior; rather it is simply designed to stop certain frequent and innocuous occurrences from spamming the logs. If we would like to turn on auditing temporarily for everything that may be audited, we may do so like this:

semodule -DB

If we would like to disable this behavior again, we would do this:

semodule –B

Moving and Copying Files

Moving and copying files in SELinux presents additional considerations beyond what we would see on an unsecured system. This is because of the security context, or labels assigned to files. Often, when SELinux problems occur, it is because we failed to account for these behaviors.

Moving
 a file is a directory operation: data is not copied from one place to another (unless we moved the file to a new filesystem). Rather, we simply change the referring entries in the appropriate directories. Labels are stored in a file’s inode, and they will not be updated by a move. This is also why files retain ownership and standard permissions metadata when moved in a classic system.

Copying
 results in the creation of a new file, and a newly populated inode with new metadata. This new file will be assigned a label based on the defined contexts of the directory it inhabits.

Passing the -
 Z
 option to c
 p
 or m
 v
 will should cause one to behave like the other regarding labels. However in EL7/8, cp -
 Z
 has no effect, the destination directory default context will be assigned.

Module 14: Logs

When a Linux machine boots it immediately begins logging kernel messages to the kernel ring buffer. This is simply a 16 KB first-in/first-out over-writable block of memory. These messages will be passed to the system logger services (
 rsyslog
 d
 and journal
 d
) when they become available. Kernel messages will continue being written here even after the logging services start.

The kernel ring buffer is readable using dmes
 g
 . Here you can see the command line switches passed to the kernel by gru
 b
 , device driver messages, system
 d
 beginning, etc. Useful switches for dmes
 g
 include -
 H
 (human formatted) and -
 T
 (use clock time instead of boot time).

There are two logging systems which run by default on an EL7/8 system. The traditional syslog
 d
 has been replaced by rsyslog
 d
 . This provides compatibility with older systems; it will take configuration files of the older syslog
 d
 format and store traditional plain text log files. With the introduction of system
 d
 , journal
 d
 has been added. Both serve distinct purposes:

	
journal
 d
 – is tightly integrated into the
 systemd
 architecture. It stores data in binary format which is more compact, and easily searched. It can upload signed and encrypted logs to a centralized server using
 systemd-journal-remot
 e
 . Ideally all logs would be here and accessed via a single tool:
 journalct
 l
 . Eventually this may be the case, but it isn't yet.

	
rsyslog
 d
 – conforms to the legacy
 syslogd
 standards and is better understood. Some programs have not yet integrated with
 journald
 . Most importantly, sending logs to an aggregation server using
 systemd-journal-remote
 only works with other
 journald
 servers. If you are using a log aggregation and analysis server, chances are it doesn't understand
 journald
 natively, so messages are instead routed through
 rsyslogd
 .

rsyslogd, logrotate

rsyslog
 d
 is nothing but a message router with dynamically configurable inputs and outputs. It can take inputs from journal
 d
 , /dev/log
 /
 , and/or a network socket. It then parses, filters, and formats the inputs. It can output the messages to a file, a database (
 mariad
 b
 , journal
 d
), or a remote system. It supports digital signature and encryption of messages sent to a remote system, using Kerberos. The main configuration file is /etc/rsyslog.con
 f
 .

The first portion of this file, MODULE
 S
 loads and configures input and output modules using the $ModLoa
 d
 directive. Two modules are provided to allow interaction between journal
 d
 and rsyslog
 d
 : imjourna
 l
 inputs to rsyslo
 g
 , while omjourna
 l
 outputs to journal
 d
 . There are many other modules allowing everything from the reading of kernel messages to direct interaction with an SQL database.

Below MODULE
 S
 is GLOBAL DIRECTIVE
 S
 . Some systems will have $OmitLocalLoggin
 g
 o
 n
 , in this section. This usually means that rsyslog
 d
 is receiving all messages from journal
 d
 instead of directly collecting them.

The RULE
 S
 section controls how messages are handled. Each line will have a message classification and destination. The message classification has two parts: the facility
 – where it from, and the severity
 – how important it is. There are several special statements: asterisk *
 is a wildcard, tilde ~
 means discard, and .non
 e
 means do not log. The facilities and severities are:

	
Facilities:

	
ker
 n
 – kernel messages

	
use
 r
 – user-level messages

	
mai
 l
 – mail system

	
daemo
 n
 – system daemons

	
authpri
 v
 – security/authorization messages

	
cro
 n
 – scheduling daemon

	
local
 7
 – local use 7 (boot messages)

	
Severities (aka priority):

	
0 emer
 g
 – System is unusable

	
1 aler
 t
 – Action must be taken immediately

	
2 cri
 t
 – Critical conditions, such as hard device errors

	
3 er
 r
 – Error conditions

	
4 warnin
 g
 – Warning conditions

	
5 notic
 e
 – Normal but significant conditions

	
6 inf
 o
 – Informational messages

	
7 debu
 g
 – Debug-level messages

Destinations can be:

	
A file

	Standard logs include /var/log/…message
 s
 , secur
 e
 , cro
 n
 , maillo
 g
 , boot.log

	A standard out, such as /dev/console

	
A remote machine

	

@
 hostname:por
 t
 – sends UDP

	
@@
 hostname:por
 t
 – sends TCP

	
An output module

	
:omusrmsg:
 *
 – message everyone using
 wall

	
:omjournal
 :
 – send to journald

	
:omrelp
 :
 – use the Reliable Event Logging Protocol

	A filter – if you have advanced needs

	
Discard – specified with tilde ~

	Any messages discarded will not be processed by a subsequent rules

	

 .
 ~
 ends all
 processing.

The STIG requires that logs be sent to a remote server. The recommended way to do this does not take into account the inherent unreliability of the standard transfer method. If the remote server is not available or the local machine crashes, messages will be lost.

Rather than issuing *.* @@
 servername
 :51
 4
 – as specified in the STIG, you should use RELP, the Reliable Event Logging Protocol, if available. To configure RELP:

	
On the Aggregator:

	
In rsyslog.con
 f
 :

	
$ModLoad imrelp

	
$
 InputRELPServerRun 2514

	
#firewall-cmd --zone=public --add-port=2514/tcp --permanent

	
#firewall-cmd --reload

	
On the Sender:

	
In rsyslog.con
 f
 :

	
$Modload omrel
 p

	
. :omreplp:
 10.1.1.250
 :251
 4

	
On Both:

	
#semanage port -a -t syslogd_port_t -p tcp 2514

If RELP is not available, uncomment and configure the sample forwarding rule at the bottom of rsyslog.con
 f
 . This creates an on-disk queue which will be retransmitted if need be.

The STIG specifies that unless this machine is an aggregation server and documented as such, it should not receive logs from other machines. This is done by ensuring that the modules imup
 d
 , imtc
 p
 , and imrel
 p
 are not loaded. The STIG only mentions imtc
 p
 .

Retention and rotation of rsyslog
 d
 files is accomplished by logrotat
 e
 , which is called from cron.dail
 y
 by anacro
 n
 . It is configured in /etc/logrotate.con
 f
 . These settings should be adjusted to meet your retention requirements.

You can generate your own messages that will be sent to the logging services using the utility logge
 r
 , with priority -
 p
 . To put "
 tes
 t
 " in the log as a warnin
 g
 from cro
 n
 :

logger -p cron.warning tes
 t

journald, journalctl

By default journal
 d
 only stores data in /run/lo
 g
 , which is in volatile memory and lost at each reboot. To make the journal persistent, create a directory: /var/log/journal
 /
 and restart systemd-journald.servic
 e
 .

File rotation is accomplished automatically, based on disk usage. Retention and other behaviors are configured in /etc/systemd/journald.con
 f
 and the associated conf.d/*.con
 f
 files. Some relevant parameters include:

	

Storag
 e
 – default
 aut
 o
 , which will log to
 /var/log/journal/
 …
 if it is present

	
persisten
 t
 will create the directory if it is not.

	
Compres
 s
 –
 o
 n
 by default.

	
SystemMaxUs
 e
 /
 RuntimeMaxUs
 e
 – maximum disk and ram used. Default
 10
 %
 .

	
SystemKeepFre
 e
 /
 RuntimeKeepFre
 e
 – disk and ram left free. Default
 15
 %
 .

	

MaxFileSe
 c
 /
 MaxRetentionSe
 c
 – Time to store entries in seconds.

	
Can be suffixed with
 yea
 r
 ,
 mont
 h
 ,
 wee
 k
 ,
 da
 y
 .

	
0
 equals forever.

	
MaxLevelStor
 e
 – the severity of messages to keep. Default
 debu
 g
 .

	
MaxLevelWal
 l
 – severity of messages to send to all logged in users. Default
 emer
 g
 .

The journal produced by journal
 d
 is in binary format and is not directly readable. To view the contents of the journal, use journalct
 l
 . Common switches include:

All messages can be sent from journal
 d
 to rsyslog
 d
 or vice-versa. It is possible to send all messages from rsyslog
 d
 to journal
 d
 , and
 from journal
 d
 to rsyslo
 g
 simultaneously, creating an infinite loop. Do one or the other, not both.

Given that most current security specifications are built around rsyslog
 d
 , that's probably where you want to send all messages.

	
To send everything to rsyslog
 d
 :

	
in rsyslog.con
 f
 :

	
$ModLoa
 d
 imuxsock

	
$OmitLocalLogging off

	
in /etc/rsyslog.d/listend.con
 f
 :

	
$SystemLogSocketName /run/systemd/journal/syslo
 g

	
in journald.con
 f
 :

	
Storage=volatil
 e

	
rm -r
 f
 /var/log/journal/

	
To send everything to journal
 d
 :

	
in rsyslog.con
 f
 :

	
$Modloa
 d
 omjournal

	
*.
 *
 :omjournal:

	
in journald.con
 f
 :

	
Storage=persisten
 t

auditd

In addition to the standard system and security logs, Enterprise Linux also has the audit
 d
 service which can be configured to record a wide variety of security related events in /var/log/audit/audit.lo
 g
 . By default audit
 d
 will record events related to SELinux, authentication, authorization, and sud
 o
 . Additional events can be audited with the addition of rules. Audit rules can be manipulated using auditct
 l
 . To list existing rules: # auditctl -
 l

There are four types of rules:

	Watch a file or directory for activity, often paired with -
 p
 permission type:

auditctl -w /etc/passwd -p wa -k identity

watches /etc/passw
 d
 for write or attribute change, making a record with key "identity"

	Audit a specific kernel system call:

auditctl -a always,exit -F arch=b64 \

-S sethostname -F key=system-locale

audits the 64 bit system call sethostnam
 e
 when it exits and logs as "system-locale"

	Audit (or in this case not audit) everything done by a specific user:

auditctl -a never,user -F auid=100

will never audit events associated with audit User ID 100

	Exclude a given group of events:

auditctl -a always,exclude -F msgtype=CRYPTO_KEY_USER

excludes messages about ssh and ssl keys presented to the server

The rules can get quite complex:

auditctl -a always,exit -F arch=b64 -S clock_settime -F a0=0x0

 -F subj_type!=ntpd_t -F key=time-change

This makes a record only when the first argument (
 a
 0
) to the clock_settim
 e
 systemcall is 0
 (the realtime system clock) and the user process doing it is not (
 !
 =
) labled ntpd_
 t
 by SELinux.

Fortunately, we don't have to bother coming up with all the rules and typing them in using auditct
 l
 . In any case that will only affect the current running system, and all the rules will go away at the next restart of audit
 d
 . Instead we need to place our configuration in /etc/audit/rules.
 d
 and run augenrule
 s
 . This will evaluate the rule sets placed in rules.
 d
 , validate them, aggregate them in order, and place them in /etc/audit/audit.rule
 s
 , which is the file actually read by audit
 d
 .

Even more fortunately the authors of audit
 d
 work closely with the groups that make the STIG and other security standards and have provided a set of rules and scripts to meet the baseline. These it should meet the minimum requirements, but it is a good idea to check the results against the STIG. To use these:

	
cd /usr/share/doc/audit
 -version-number
 /rules
 /

	

vi 31-privileged.rule
 s

	remove the leading hashes after the comments

	
chmod 700 31-privileged.
 rule
 s

	

./31-privileged.rule
 s

	this makes a new file ./priv.rule
 s

	
mv priv.rules 35-priv.rule
 s

	

vi 99-finalize.rule
 s

	remove the leading hash #
 on -e
 2

	copy 10-bas
 e
 , 30-sti
 g
 , 35-pri
 v
 , and 99-finaliz
 e
 to /etc/audit/rules.
 d

	

augenrules --chec
 k

	this verifies the syntax

	

augenrules --loa
 d

	this copies the contents of rules.d
 /
 to audit.rule
 s

	
reboo
 t
 to make the audit system immutable (
 -e
 2
)

This is sufficient for most use cases. But auditing can take a substantial toll on performance as each rule needs to be evaluated in order until there is a match, and this happens every time a userspace program asks the kernel to do anything. There are a number of performance tuning steps that can be taken within the rule set:

	Combine multiple system calls to reduce the number of total rules.

	Create neve
 r
 and exclud
 e
 rules and place them at the top

	
Move the most used rules to the top, the least used to the bottom

	One way to determine which are most used is to add unique identifiers to the key fields, let run for a while, then analyze the results.

	Move the rules for 32 bit architectures (
 arch=b32
)
 toward the bottom. The only reason there are dual rules are because the system call identifiers are different between 32 and 64 bit versions. On a modern system the 32 bit calls should be rare.

	Monitor the memory used by audit
 d
 during busy times; if needed increase the buffer size (
 -
 b
 in 10-base-confi
 g
)

	
Always leave -e
 2
 , the immutable flag, as the final statement.

	All rule processing ends when this flag is set and the configuration is locked until the next boot. Any rules below it will be ignored.

As noted in the section on gru
 b
 , the kernel argument audit=
 1
 should always be passed during boot. This ensures that all processes, including those that start before audit
 d
 are audited.

Because of its unique position in the security hierarchy, the auditd.servic
 e
 is protected from direct manipulation by system
 d
 . To restart it, use:

service auditd stop && service auditd start

audisp-remote

In EL7 audit
 d
 needs the plugin audis
 p
 to be enabled to send logs to a remote server. Set the activ
 e
 line in /etc/audisp/plugins.d/syslog.con
 f
 to ye
 s
 .

In EL8 the functions of audisp
 d
 have been incorporated into audit
 d
 . audisp
 d
 configuration options are now part of auditd.con
 f
 . In addition, the plugins.
 d
 directory has been moved under /etc/audi
 t
 . The current status of audit
 d
 and its plug-ins can now be checked with

service auditd state

To enable remote auditing:

On the sending machine:

	Install audispd-plugins

	
In /etc/audit/audisp-remote.con
 f
 (EL7 /etc/audisp
 /
)

	
remote_server =
 destination.ip.address

	
port = 60

	
local_port = any

	
In /etc/audit/plugins.d/au-remote.con
 f
 (EL7 /etc/audisp/plugins.d
 /
)

	
active = yes

	
direction = out

	
#
 service auditd restart

On the aggregator:

	Install audispd-plugins

	
In /etc/audit/audisp-remote.con
 f
 (EL7 /etc/audisp
 /
)

	
local_port=any

	
In /etc/audit/plugins.d/au-remote.con
 f
 (EL7 /etc/audisp/plugins.d
 /
)

	
active = yes

	
direction = in

	
In /etc/audit/auditd.conf

	
tcp_listen_port = 60

	
tcp_client_ports = 1024-65535

	
Configure firewall

	
firewall-cmd --permanent --zone=public --add-rich-rule=' rule family="ipv4" source address="
 sender.ip.address
 " port protocol="tcp" port="60" accept '

	
systemctl reload firewalld.service

	
firewall-cmd --list-all

	
Confirm:

	
tail -f /var/log/audit/audit.log | ausearch -
 i
 on the aggregator

	perform an auditable event (such as creating a user) on the sender

aureport, ausearch

There are two special tools for parsing audit logs: aurepor
 t
 and ausearc
 h
 . A full dive into these tools is beyond the scope of this book, but here are some handy examples:

Find and explore failed authentication events occurring today:

aureport -au -ts today –failed

<truncated>

3. 09/26/2019 13:12:30 root 192.168.210.246 ssh /usr/sbin/sshd no
 427

The last number is an event ID. This can be used to get an interpreted, detailed output:

ausearch -i -a 427

type=USER_AUTH msg=audit(09/26/2019 13:12:30.460:427) : pid=3878 uid=root auid=unset ses=unset subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 msg='op=PAM:authentication grantors=? acct=root exe=/usr/sbin/sshd hostname=192.168.210.246 addr=192.168.210.246 terminal=ssh res=failed'

Provide a report on events since the last boot:

aureport -ts boot --summary | head

Summary Report

======================

Range of time in logs: 05/29/2019 13:13:05.153 - 09/26/2019 14:23:06.175

Selected time for report: 09/26/2019 10:42:16 - 09/26/2019 14:23:06.175

Number of changes in configuration: 109

Number of changes to accounts, groups, or roles: 37

Number of logins: 3

Number of failed logins: 1

Number of authentications: 3

Find all useradd commands run:

ausearch -c useradd

Find all events for a given user

id student

uid=
 1000
 (student) gid=1000(student) groups=1000(student),10(wheel)

ausearch -ua 1000

timedatectl, chronyc, hwclock

Logs are worthless if they don’t have valid timestamps. Keeping good time is a part of security, as well as being essential for most certificate based services such as Kerberos. To set the time:

	
First check the system time and timezone:

timedatectl status

	
If the timezone is wrong, change it using

timedatectl set-timezone
 America/Chicago

	A list of available timezones viewable by using:

timedatectl list-timezones

	If the time is more than about 10 minutes out you should set the clock before enabling ntp.

timedatectl set-time
 "2012-10-30 18:17:16"

or

chronyc manual on && chronyc settime
 18:17
 && chronyc manual off

	
Determine the appropriate ntp server. Most networks will have a local ntp server; if so use it. If not, some alternatives are:

	
For government networks

	
time.nist.go
 v

	
tic
 k
 , toc
 k
 , and ntp2.usno.navy.mi
 l
 for east and central regions

	
tic
 k
 , and tock.usnogps.navy.mi
 l
 for mountain and pacific

	In the civilian world you can leave the default pools

	
Configure the appropriate ntp servers:

vi /etc/chrony.conf

	Comment out any poo
 l
 lines. Add serve
 r
 lines in order of preference:

server
 192.168.1.1
 iburst

The iburs
 t
 directive allows for faster initial synchronization.

	
Enable network time protocol (ntp) with

timedatectl set-ntp true

	Restart or enable the chronyd service with systemctl

	
Check the status using

chronyc sources

chronyc sourcestats

chronyc tracking

	or by comparing to another server

clockdiff -o
 other.server

	The last step of the time setting process is writing the system (software based) time to the hardware (BIOS) clock. This is accomplished with

hwclock –w

On a virtual machine this is less important as the hardware clock is reset at each power on. If you find that the clock is consistently incorrect, the host's clock will need to be corrected.

Module 15: Installing Software

yum

Enterprise Linux comes with rp
 m
 , the RedHat Package Manager, as the primary way to install, manage, upgrade, and remove software. It will work with software either in .rp
 m
 binary format or with compiled files with an attached plain-text manifest file. It can install files from local storage or a network location. rp
 m
 is fully capable of performing everything you might ever need to do with software on an EL system, but it can be tedious to use. It requires you to locate the specific software you want to install, it does not deal with dependencies automatically, and it also lacks the ability to automatically update a system.

To make up for the shortfalls of rp
 m
 , yu
 m
 was written. It is a higher-level package manager that runs on top of rp
 m
 , making software management much easier. In EL8, yum
 has been replaced by dn
 f
 , which is a modern reimplementation of yu
 m
 .

The invocation of dn
 f
 is almost identical to that of yu
 m
 , to the point that in EL8 yu
 m
 is a link to dn
 f
 , and the yu
 m
 man page redirects to dn
 f
 . While there are some small differences in functionality, dn
 f
 can be treated as a faster, less memory intensive yu
 m
 . In this book we will use yu
 m
 in our examples, because it is cross-version compatible and because as of this writing the

bash-completio
 n
 hints for dn
 f
 are not functional.

When using rp
 m
 you must locate software packages individually; yu
 m
 uses collections of software known as repositories or repos. Your system will come with multiple Internet-based repos configured. There is a prebuilt repo on most installation media. You can even create your own by running createrep
 o
 on a directory full of .rp
 m
 files.

If you are running Red Hat you will need a subscription to access the official repositories. You will also need to register your system:

subscription-manager register

subscription-manager subscribe

To obtain a list of available repos use # yum repolis
 t
 , with the enable
 d
 option it will only show the active ones:

yum repolist enabled

repo id repo name status

AppStream CentOS-8 - AppStream 4,928

BaseOS CentOS-8 - Base 2,713

extras CentOS-8 - Extras 3

This shows the basic information: which repos are configured, and how many packages each contains. For a repo to be active, it must be in /etc/yum.repos.d
 /
 , have a file extension ending in .rep
 o
 , and contain the line enable=
 1
 . You can disable a repo by editing it, moving it, or renaming it. The basic format of a .rep
 o
 is this:

[extras]
 ## a unique repository id

name=CentOS-$releasever - Extras
 ## the pretty name

mirrorlist=http://mirrorlist…
 <truncated> ## server pool with the repo

#baseurl=http://mirror…
 <truncated> ## server with repo

gpgcheck=1
 ## verify software signature

enabled=1
 ## the repo is allowed to be used

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosoffical
 ## signature

There is an optional repo, the Extended Packages for Enterprise Linux (EPEL) which is not configured by default, but holds many handy tools. To enable this repo:

	
On Red Hat: # yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

	insert the major version number before .noarch

	On CentOS: # yum install epel-releas
 e

	On Amazon Linux # amazon-linux-extras install epel

You can create your own repos. To use a dvd as an update source for an isolated computer:

	Disable the default repos

	Mount the dvd:

#
 mkdir /dvd/ ; mount /dev/cdrom /dvd/

	

Create a new file:

vi dvd.rep
 o

[dvd-repo]

name=DVD-repo

baseurl=file:///dvd

enable=1

gpgcheck=1

gpgkey=file:///dvd/RPM-GPG-KEY-CentOS-7

The system should immediately recognize the newly created repo. If you were using a network resource the baseur
 l
 would be http:/
 /
 or ftp:/
 /
 . Note that there are three slashes in a file URL: two for the URL itself+(
 file:/
 /
), and one to indicate the root directory /
 dv
 d
 .

Not all repos will have a GPG Key, for example, in a test and development environment. In this case set gpgcheck=
 0
 . This should only be done if you know the source of the unsigned software, and should never be set on production systems.

The primary configuration file for yu
 m
 is /etc/yum.con
 f
 , relevant directives include:

	
gpgchec
 k
 /
 local_gpgchec
 k
 – these should both be set to
 1
 , forcing yum to verify signatures on software before installing.

	
group_package_type
 s
 – by default
 groupinstal
 l
 will only install default and mandatory packages. To install all packages in a group, set this to

default, mandatory, optiona
 l
 .

	
installonly_limi
 t
 – install only packages do not automatically have the old version removed when a newer version is installed. The main "install only" package is the kernel, therefore this setting controls how many old kernels are retained.

Default is
 5
 , recommended is
 2
 , which is also the minimum. This allows booting to an older, known good kernel in case of a problem with a kernel upgrade.

	
keepcach
 e
 – if
 0
 or
 fals
 e
 remove downloaded packages after successful installation. Default is varies by distribution and version.

In addition to saving old downloaded packages, yu
 m
 relies on a series of caches for information such as package listings, descriptions, and which mirrors are fastest. Over time the old packages will build up and the caches will go stale. This will fill /va
 r
 , and will also make you wait to rebuild caches the next time you run yu
 m
 . To avoid this it is good practice to create scheduled event at least weekly which will run # yum clean al
 l
 and # yum makecach
 e
 . In EL8 the makecach
 e
 is automatically accomplished with dnf-makecache.time
 r
 .

Use of yu
 m
 itself is pretty straightforward. Common invocations and options are:

	
-
 y
 – assume yes

	
-
 q
 – quiet, often used with & to background the process

	
install
 package-nam
 e
 – installs a given package

	
remove
 package-nam
 e
 – removes a package and anything that depends on it

	
reinstall
 package-nam
 e
 – reinstall a package, will not alter configuration files or dependent packages

	
check-upgrad
 e
 – show, but don't install available upgrades

	

upgrad
 e
 – upgrades all installed software to the current version

	
-x
 package-nam
 e
 – excludes package from upgrade

	
upgrade-minima
 l
 – only performs security upgrades

	
search
 strin
 g
 – looks for strin
 g
 in all package names and short descriptions

	
provides */
 program-nam
 e
 – returns the package that supplied that program

	
info
 package-nam
 e
 – provides details including status: installed/available

	

repoquer
 y

	
-
 l
 – list files in a package

	
--whatdepend
 s
 – show dependent packages

	
list installe
 d
 – show all installed software

	
grouplis
 t
 – show software groups (related packages for a particular purpose)

	
groupinstal
 l
 – install a complete set of related packages

Sometimes a group will not install, even though it shows as available. A workaround for this is

yum -y group mark install "package-name" && yum -y upgrad
 e

This tells yu
 m
 that the group is installed. When you run the upgrade, it gets the latest version to replace the missing one.

Both yu
 m
 and dn
 f
 support plugins that enhance their functionality. A particularly useful plugin is versionloc
 k
 , which will protect packages from upgrade.

The plugins available will vary between versions and distros, to see which are available to you:

yum search dnf-plugin | xargs yum info | less

For EL7 substitute yum-plugi
 n
 .

packagekit

Often a service called packageki
 t
 will be installed and enabled. It provides automatic updates. Typically we want more control than is provided by packageki
 t
 . It also tends to run at annoying times, locking the installation process, and preventing manual installation of software.

To disable it, we first make sure it isn't doing anything at the moment:

pkill –9 yum

This terminates any currently running installations.

Now stop and mask packagekit and its related offline update service.

systemctl stop packagekit.service

systemctl mask packagekit-offline-update.service

systemctl mask packagekit.service

rpm

As mentioned earlier, yu
 m
 isn't an answer to everything; rp
 m
 is still sometimes needed. Examples of common usages:

The output of rpm -V
 a
 will look something like this:

SM5..UGT. c /etc/plymouth/plymouthd.conf

Anything other than a period in the first block means that something is different from the original installation. The codes are:

	
S
 – file Size differs

	
M
 – Mode differs (includes permissions and file type)

	
5
 – MD5 sum differs

	
D
 – Device major/minor number mismatch

	
L
 – symLink path mismatch

	
U
 – User ownership differs

	
G
 – Group ownership differs

	
T
 – mTime differs

The c
 before the path means that this is a configuration file and changes to it can be probably be safely ignored, this is usually the case for .xml files as well:

rpm -Va |grep -v -e " c " file | grep -v -e xml >
 fil
 e

will keep you from spending too much time looking at irrelevant results.

Mode, User, or Group mismatches, indicated by M
 , U
 , or G
 can be corrected by finding the package that controls the offending file with

rpm –qf
 filename

 then

rpm --setperms
 package-nam
 e

rpm --setguids
 package-name

In the case of hash mismatches, indicated by a 5
 , the package should be reinstalled using

rpm –U
 h
 package-name

Linux Installation

Enterprise Linux can be installed from a DVD, USB, or network source. The installation source is available at:

	https://www.centos.org/download/ – Get the DVD ISO for most purposes

	https://access.redhat.com/downloads/ – Login required

	https://getfedora.org/en/server/download/ – If you want to live on the edge a little

After you've downloaded the source, simply burn it to a DVD. To create a bootable USB from a Linux machine ensure that your USB device is unmounted then:

dd if=
 /path/to/boot.iso
 of=
 /dev/sd-usb
 bs=512k

If you need to create a bootable USB from Windows or Mac, use the FedoraMediaWriter available at https://getfedora.org/en/workstation/download/.

Methods for installation from network sources can vary wildly. The official documentation should be consulted.

The initial boot menu has three options: Install, Test media and install (default), and Troubleshooting. The Troubleshooting menu provides options to Install in basic graphical mode (in case the installer has issues with your graphics card), a Rescue mode for unbootable systems, a memory tester, and an option to just boot from local disk.

You can also press ta
 b
 to break out of this menu and add options to the end of the command line. Press enter to continue installing. In addition to the kernel command line options discussed in Booting, you may also add:

	
inst.dd=
 http://someurl.com/weird-drivers.is
 o
 – Add drivers from a URL

	
inst.ks=
 ftp://localserver/pub/ks.cf
 g
 – Use a kickstart script

	
inst.tex
 t
 – Force a text mode install

	
inst.ssh
 d
 – Enable sshd during installation

	
modprobe.blacklist=
 ahci,firewire,ohc
 i
 – disable kernel modules, persistent after installation

	
dracu
 t
 options – Uncommon, more info is in the
 dracut.cmdlin
 e
 man page.

	
fips=
 1
 – enable FIPS 140-2 compliance – required

The FIPS (the Federal Information Processing Standard) is a series of standards to which all government, and other regulated secure systems must conform. To enable strict compliance with FIPS 140-2 (cryptographic standards), add fips=
 1
 to the kernel command line at installation. This ensures that all keys are generated with FIPS algorithms and that FIPS will be enabled on boot. To verify FIPS compliance run sysctl crypto.fips_enable
 d
 ; it should return 1
 .

There is a published procedure to implement FIPS on an existing system, but it should not be used as it is more likely to break the system than it is to actually secure it. Also, if you implement FIPS after installation, there is no guarantee that keys generated for the system are made with the proper algorithms and with appropriate entropy sources.

For best results you should add entropy to the system by inputting some random keystrokes or mouse movements (at least 256) during the installation procedure.

Reference – http://csrc.nist.gov/publications/PubsFIPS.html

Both for practicality and for STIG compliance you should create these separate partitions:

	

 /

	
/boot

	
/tmp

	
/var

	
/var/log

	
/var/log/audit

	
/hom
 e

	
swa
 p

Example kickstart files which will do the partitioning for you, and implement a lot of other essential security measures can be found in

/usr/share/scap-security-guide/kickstart
 /
 after installing the

scap-security-guid
 e
 package. This can be edited appropriately to meet the needs of your environment and provided using pretty much any URL based protocol (http, ftp, scp, nfs, etc.)

If you are not using a kickstart file, you will then be led through a straightforward installation. Note that many installations will default to a very minimal installation if you do not click on "Software Selection" and add additional packages. Also, if you do not configure networking and set it to “On” your system will not automatically connect to a network.

If available you should also select the Security Profile appropriate to your environment (for instance 'STIG: Server with GUI').

Previous versions of this book explained how to install VMware tools, this is no longer required as EL7/8 will autodetect virtualization and install a guest-managed version.

Module 16: Kernel Modules and Parameters

The core of an operating system is the kernel. It is responsible for direct access to and manipulation of a system’s hardware. Typically, the kernel will be as small as is practical. It will have the capability required to boot a system and operate things like memory and processors, with a minimal set of tools for dealing with storage and networking.

Kernel modules provide additional functionality to the kernel. This can include advanced networking, firewall filtering, encryption, and device drivers. When a kernel module is loaded it effectively becomes part of the kernel, and runs with direct access to hardware and with the full privledges of the operating system itself. Unneeded kernel modules should be unloaded as they can bloat the operating system, and increase the potential attack surface.

Kernel modules come in two basic types, static and dynamic. We will only be concerned with dynamic modules in this book.

	

Static
 modules are compiled into the kernel.

	Requires a kernel recompililation to build

	Requires a system reboot to load

	Makes the kernel’s memory footprint larger

	Increases boot time

	Usually chosen when a system cannot boot without the capabilities of the module

	

Dynamic
 modules, may be loaded or unloaded as needed.

	Keeps the kernel small and lean

	Does not require a reboot to load and use

	Yields faster boot times and more efficient use of system resources

	Generally preferred to static modules

lsmod, modinfo, modprobe

To see a list of kernel modules and a summary of their dependencies use lsmo
 d
 , which provides a formatted version of the contents of /proc/module
 s
 :

lsmod

Module Size Used by

bnx2fc 110592 0

cnic 73728 1 bnx2fc

uio 20480 1 cnic

libfcoe 81920 1 bnx2fc

libfc 147456 2 bnx2fc,libfcoe

scsi_transport_fc 69632 2 libfc,bnx2fc

<truncated
 >

cat /proc/modules

bnx2fc 110592 0 - Live 0xffffffffc08a6000

cnic 73728 1 bnx2fc, Live 0xffffffffc088e000

uio 20480 1 cnic, Live 0xffffffffc0844000

libfcoe 81920 1 bnx2fc, Live 0xffffffffc0879000

libfc 147456 2 bnx2fc,libfcoe, Live 0xffffffffc084b000

scsi_transport_fc 69632 2 bnx2fc,libfc, Live 0xffffffffc0832000

<truncated>

The best use of lsmo
 d
 is in determining the existence or nonexistence of a particular module. For more specific information about these modules use modinf
 o
 :

modinfo bnx2fc

filename: /lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/scsi/bnx2fc/bnx2fc.ko.xz

<truncated>

parm: debug_logging:Option to enable extended logging,

 Default is 0 - no logging.

 0x01 - SCSI cmd error, cleanup.

 0x02 - Session setup, cleanup, etc.

 0x04 - lport events, link, mtu, etc.

 0x08 - ELS logs.

 0x10 - fcoe L2 fame related logs.

 0xff - LOG all messages. (int)

parm: devloss_tmo: Change devloss_tmo for the remote ports attached via bnx2fc. (uint)

<truncated>

The bolded output above shows that the bnx2f
 c
 kernel module has associated parameters
 . Parameters are configurable values that modify the behavior of kernel modules. There are some tools, such as insmo
 d
 , rmmo
 d
 , lsmo
 d
 , which can be used to directly manipulate modules and their parameters. But the preferred tool is modprob
 e
 , as it can handle multiple module-related tasks in a safer, more controlled fashion.

Using modprob
 e
 we will load the bnx2f
 c
 module normally, then set the value of the debug_loggin
 g
 parameter to 0x0
 1
 (1 in hexadecimal).

modprobe bnx2fc

modprobe bnx2fc debug_logging=0x01

#

That seemed successful. To see what effect that had, we can look in the module’s parameters directory:

ls /sys/module/bnx2fc/parameters/

debug_logging
 devloss_tmo log_fka max_luns queue_depth

cat /sys/module/bnx2fc/parameters/debug_logging

0

The current value for the debug_loggin
 g
 parameter is still 0
 .

This is because kernel module parameters cannot be altered while the module is in use. When we ran the command modprobe bnx2fc debug_logging=0x0
 1
 , modprob
 e
 attempted to load
 the module with that value. Since the bnx2f
 c
 module was already loaded, modprobe
 ignored the parameter settings and exited with a return code of 0.

To alter this parameter, we must first unload the module. Before we attempt this, we should first check to see if any other modules are dependent on it.

lsmod | grep bnx2fc

bnx2fc 110592 0

cnic 73728 1 bnx2fc

libfcoe 81920 1 bnx2fc

libfc 147456 2 bnx2fc,libfcoe

scsi_transport_fc 69632 2 libfc,bnx2fc

The above output tells us that while bnx2f
 c
 depends on several other modules, it doesn’t have any modules that depend on it.

Let’s unload the bnx2f
 c
 module:

modprobe -rv bnx2fc

rmmod bnx2fc

rmmod libfcoe

rmmod libfc

rmmod scsi_transport_fc

rmmod cnic

rmmod uio

When we instruct modprob
 e
 to unload a module. It will:

	
not unload a module that is in use by a device or process

	
not unload a module that is used as a dependency for another active module

	
intelligently unload a module upon which it was dependent, if it is no longer be needed

When we asked modprob
 e
 to unload bnx2f
 c
 , cni
 c
 , ui
 o
 , and other modules were also removed as no other device, process, or module required them. If any of these modules had been in use or required elsewhere, they would not
 have been unloaded.

Now that the bnx2f
 c
 module has been unloaded, we can load it again with desired parameters, and verify the new setting.

modprobe bnx2fc debug_logging=0x01

cat /sys/module/bnx2fc/parameters/debug_logging

1

If the module is unloaded and loaded again, either manually or by any other process (during boot for example), it will be reloaded with the default values for all parameters
 .

To make changes persistent, create or modify configuration files in /etc/modprobe.d
 /
 . Any files placed in this directory will be read by modprob
 e
 when loading modules. The file name is not important as long as it ends in .con
 f
 but the internal structure and values are. The format is:

options
 module_name
 parameter
 =
 value

We’re altering the parameters of the bnx2f
 c
 module, so we will name our configuration file accordingly:

cd /etc/modprobe.d

echo "options bnx2fc debug_logging=0x02" > bnx2fc.conf

cat bnx2fc.conf

options bnx2fc debug_logging=0x02

When we unload and reload our module, we should see the value of the debug_loggin
 g
 parameter change to 2
 as described in our configuration file:

modprobe -r bnx2fc

modprobe -v bnx2fc

insmod /lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/scsi/scsi_transport_fc.ko.xz

<truncated>

insmod /lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/scsi/bnx2fc/bnx2fc.ko.xz debug_logging=
 0x02

cat /sys/module/bnx2fc/parameters/debug_logging

2

Blacklisting

In some situations, we may wish to prevent kernel modules from loading. This is done for security, to prevent loading of unstable modules, or avoid driver conflicts. While it is possible to entirely remove some modules from a system, a less drastic option is blacklisting.

Blacklisting allows us to prohibit loading of kernel modules that exist on our system. We can create a file in /etc/modprobe.d
 /
 to disallow loading of a specific module:

echo "blacklist bnx2fc" > blacklist_bnx2fc.conf

cat blacklist_bnx2fc.conf

blacklist bnx2fc

This will prevent automatic
 loading of the bnx2f
 c
 module. It will not, however, prevent an administrator from manually loading the module, or prevent the module from being loaded as a dependency for another non-blacklisted module. To keep this module from ever being loaded, add another line to the configuration file:

echo "install bnx2fc /bin/true" >> blacklist_bnx2fc.con
 f

cat blacklist_bnx2fc.conf

blacklist bnx2fc

install bnx2fc /bin/true

The effect of the line above is to redirect any attempt to load the bnx2f
 c
 module to /bin/tru
 e
 , which will simply exit with code 0
 . In other words, it will succeed in doing nothing. You could also use /bin/fals
 e
 , which will do nothing, unsuccessfully (with an exit code of 1).

sysctl

To this point, we have been discussing kernel module
 parameters. There are also some parameters of the kernel itself that are exposed to direct manipulation. We can get a list of these using the sysct
 l
 command:

sysctl -a

abi.vsyscall32 = 1

crypto.fips_enabled = 1

debug.exception-trace = 1

debug.kprobes-optimization = 1

dev.cdrom.autoclose = 1

dev.cdrom.autoeject = 0

dev.cdrom.check_media = 0

dev.cdrom.debug = 0

<truncated>

We can alter these in realtime with the sysctl -
 w
 command, for example:

#
 sysctl -w
 net.ipv4.ip_forward =
 0

To alter them persistently, create files with the desired changes in /etc/sysctl.
 d
 . These files can have any name, so long as they have an extension of .con
 f
 .

Changes in these files will alter the value for the specified parameter when the kernel is next loaded at boot. We can force a reload of kernel parameters with

#
 sysctl --syste
 m

Altering these parameters without full knowledge of the effects that will result is highly inadvisable
 . There are a large number of required settings in the STIG, and some software (such as databases) will run better with certain kernel parameter changes. But without a known good reference any changes should be approached with extreme caution, particularly on production systems. More information on kernel parameter settings specified by STIG can be found in the Security module.

Module 17: Backups

tar

One of the oldest programs for backing up and restoring files, ta
 r
 is filesystem and directory structure aware. It backs up files, not bytes. While it can capture a file in an inconsistent state, it will not break the underlying filesystem. Commonly used invocations for ta
 r
 include:

	

tar -czpf arc.tar /etc/*.con
 f
 – where arc.ta
 r
 is the destination and /etc/*.con
 f
 is the source

	
-
 c
 – create archive

	
-
 z
 – zip compress the archive

	
-
 p
 – preserve permissions (happens for root by default)

	
-
 f
 – archive filename follows, must be the last option

	

tar -tvf arc.ta
 r

	
-
 t
 – list contents of archive

	
-
 v
 – verbosely

	

tar -xf arc.tar -C /alt/pat
 h
 .

	
-
 x
 – extract, modern tar will autodetect the compression type

	

-
 C
 – change directory to /alt/pat
 h

	with no further direction ta
 r
 will restore relative to the current directory

	Individual files can be extracted by path as recorded by ta
 r
 , wildcards acceptable.

	
tar -cvf arc.tar $(find /etc/ -name f*.conf
)
 – use the output of fin
 d
 as the list of files to archive

Other useful options for tar include:

	

-
 d
 – find differences between archive and filesystem

	will find altered or deleted files, but not added ones

	
-
 r
 – append files to archive

	
-
 u
 – update, append newer files

	
-
 l
 – store hard links as links

	
--dereferenc
 e
 , --hard-dereferenc
 e
 – store symlinks and hard links as full files

	
--acl
 s
 – preserve extended acls, use when creating and extracting

	
--selinu
 x
 – preserve SELinux context, use when creating and extracting

	
--xattr
 s
 – preserve both SELinux and acls attributes, use when creating and extracting

rsync

A more modern tool, rsyn
 c
 allows copy and archive either locally or between machines. It is content aware, will only transfer the differences between file sets, and can compress during transit for bandwidth savings. It can be used either as a stand-alone command to transfer between two machines; or it can be configured as a service, allowing multiple clients to synchronize files to a centralized server.

To perform transfers rsyn
 c
 uses remote shell protocols such as ss
 h
 to perform the transfer. Verify that you can ss
 h
 from the source to the destination machines before using rsyn
 c
 . The basic invocation is:

rsync -av
 /source/dir/

 username
 @
 target.server
 :
 /dest/directory/

If you omit the trailing /
 on the source, it will create the final directory name at the destination, e.g.: /dest/directory/dir
 /
 . To reverse the process, simply flip source and destination. A source with no destination will list the files instead of copying.

Common switches for rsyn
 c
 include:

	
-
 a
 – archive, equivalent to -rlptgo
 D
 , which is to say:

r
 ecurse, c
 opy links; save p
 ermissions, t
 imestamps, g
 roup, and o
 wner; preserve D
 evice and special files

	
-
 v
 – verbose

	
-
 z
 – compress (during transit, it will decompress at the destination)

	
-
 h
 – present human readable output

	
-
 e
 – use specified transport, must be in quotes: "ssh -i
 /path/key
 "

	
-
 x
 – do not exit this filesystem

	
-
 X
 – preserve extended attributes

	
-
 H
 – preserve hardlinks

	
-
 A
 – preserve ACLs

	
-
 S
 – squeeze sparse files (those with long zero blocks)

	
-
 L
 – turn links into files

	
--delet
 e
 – remove files not at the source, default is to preserve them at the destination

	
--remove-source-file
 s
 – delete source upon success, useful for temporary tarballs

	

--include / --exclud
 e
 / --filte
 r
 – allows detailed specification of files

	e.g.:
 # rsync -av
 --exclude "*log*"
 /var remote.server/backu
 p

	Filters can get quite involved, consult FILTER RULE
 S
 in the man page

dd

We will briefly look at d
 d
 , not so much as a backup solution, but because it does other useful things. If used on a working filesystem, it is recommended that the source filesystem either be unmounted and treated as a raw device, or remounted as read-only. If d
 d
 is run with a read-write filesystem as a source, corruption may occur.

It can be used to perform a full backup of a device using:

dd if=
 /dev/source
 of=
 /dev/dest
 conv=noer
 r

The noer
 r
 option tells d
 d
 to press on even if it has a read error. This performs a byte-wise copy of /dev/sourc
 e
 to /dev/des
 t
 , wiping all data on the destination. This can also be used to copy a partition to a file (
 of=
 /path/file.ba
 k
).

Other uses of d
 d
 include

	converting optical media to .iso image

num=$(isosize -d 2048 /dev/cdrom
)
 – set $num to the cd's block count

#
 dd if=/dev/cdrom of=
 some.img
 bs=2048 count=$nu
 m
 .

	creating a new file

dd of=
 /new/fil
 e
 – type, then CTL-d
 when done.

	
repairing master boot records

dd if=/dev/
 good/drive
 of=
 mbr.img
 bs=
 446
 count=
 1
 – copy boot code

dd if=
 mbr.img
 of=/dev/
 bad/drive
 bs=
 446
 count=
 1
 – restore to bad drive

	
bs=44
 6
 only copies the boot code

	
bs=51
 2
 copies boot code and partition table

	
wiping drives

#
 dd if=/dev/zero of=/dev/sda bs=32
 M
 – zero sd
 a
 with very large blocks

	A better way to wipe data is

#
 shred -n 20 -fuz /xfs/fil
 e

ReaR

ReaR (Relax and Recover) is a lightweight disaster recovery program capable either of standalone backup and recovery or as an adjunct recovery system for third-party backups. At its most simple you create a server and backup to it.

The clients will only need rea
 r
 installed. Servers should have rea
 r
 , genisoimag
 e
 , and syslinu
 x
 installed.

The preferred means of communication for rea
 r
 is rsyn
 c
 . The user running the backup should have read permissions for the full source system, and have full (
 rw
 x
) permissions on the destination folder. That is the only required server-side configuration.

Client configuration is in /etc/rear/local.con
 f
 :

OUTPUT_URL=rsync://
 servername/storage-directory

BACKUP=RSYNC

BACKUP_URL=rsync://
 servername/storage-directory

BACKUP_PROG_EXCLUDE=("${BACKUP_PROG_EXCLUDE[@]}" '/media' '/var/tmp' '/var/crash')

To initiate a backup simply run #
 rear mkbacku
 p
 -
 v
 . The first backup may take some time, but because rsyn
 c
 only copies differences, later backups will run faster. To only make a backup use mkbackuponl
 y
 ; mkrescu
 e
 only creates a rescue disk. ReaR does sometimes leave files in /tm
 p
 , it’s a good idea to #
 rm -Rf /tmp/rear.
 *
 afterwards.

Additional configuration can be found at /usr/share/rear/conf/default.con
 f
 .

For restoration, simply download the .iso from the server. Burn and boot from the .iso. You will be prompted several times for the root password of the backup server, certificates will not suffice. If you are restoring to a VMware virtual machine move the .iso to the host:

scp /
 path
 /rear-
 XX
 .iso root@
 esx
 :/vmfs/volumes/
 datastore
 /rear-
 XX
 .iso

Module 18: Security

We've addressed much of the implementation of the STIG and security best practices in the appropriate modules, and much can be accomplished using osca
 p
 and ansibl
 e
 as shown below, but some relevant points to keep in mind include:

	Password protect the BIOS if possible.

	Disable alternate boot methods such as cdrom and USB.

	Use LUKS encryption when practical. It is required on mobile systems.

	If you don't know that you'll need it, don't install it.

	
If you don't need graphics all the time, set the default to multi-user.targe
 t
 .

	For the most part a server should not have graphics installed.

	Disable, mask and uninstall services, sockets, groups, and packages if they are unneeded.

	
Consider restricting login hours using the pam_tim
 e
 module:

	In /etc/pam.d/logi
 n
 add account required pam_time.s
 o

	Create rules in /etc/security/time.conf

	Always login as an unprivileged user and use sud
 o
 .

	
Force read-only for removable media.

	Create a file /etc/udev/rules.d/80-ro-media.rule
 s
 add the following

SUBSYSTEM=="block",ATTRS{removable}=="1",RUN{program}="/sbin/blockdev --setro %N
 "

	If remote access is required, consider using an IPsec VPN tunnel using libreswan.

Additionally, you should reference: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html

Remove any non-essential software. If you want a list of software without parent dependencies:

#
 package-cleanup -–leaves --al
 l
 .

To run
 package-cleanu
 p
 you must install dnf-util
 s
 .

When removing language packages, they will be listed in the format Arabic Support [ab
]
 , and will tab complete as Arabic\ Support\ \[ab\
]
 , but must be named in the format arabic-suppor
 t
 to be successfully removed by yum.

Common programs to consider removing:

	
abr
 t
 – automatic bug reporting

	
alsa
 *
 – command line for sound

	
autof
 s
 – automatically mounts filesystems

	
avahi-daemon
 – provides Zeroconf networking

	
bind
 *
 – DNS server

	
bluetoot
 h
 – nobody needs this on a server

	
cdparanoia, vorbis-tools, brasero, iceda
 x
 – media stuff

	
color
 d
 – manages color profiles for graphics

	
cup
 s
 / lp
 d
 / hpli
 p
 / foomati
 c
 / redhat-lsb-printing
 – provides printer support

	
dhc
 p
 – the dhcp server

	
doveco
 t
 – imap & pop3 server

	
firstboo
 t
 – not needed after install

	
fprint
 d
 – fingerprint scanner support

	
gp
 m
 – mouse for console

	
hid
 d
 – bluetooth mouse and keyboard support

	
http
 d
 – web server

	
irqbalanc
 e
 – balances between processors, not needed on single socket machines

	
iscsi-
 *
 – iscsi protocol support

	
krb5-appl-client
 s
 – Kerberos versions of ftp, rcp, rlogin, rsh and telnet.

	
libvirt
 d
 – virtualization daemon

	
mdmonito
 r
 – software raid

	
microcode_ct
 l
 – transforms and deploys CPU microcode

	
ModemManage
 r
 – for wireless modems

	
net-snm
 p
 – SNMP server

	
nf
 s
 ,
 nfsloc
 k
 , rpcgss
 d
 , rpcbin
 d
 , rpc.mount
 d
 , rpcidmap
 d
 , rpcsvccgssd, netfs

	
oddjo
 b
 – provides privileged access to unprivileged processes, never use

	
openldap-server
 s
 – for authentication

	
portreserv
 e
 – pre-allocated ports for services

	
rhns
 d
 – Red Hat proprietary update agent

	
samb
 a
 – file sharing

	
squi
 d
 – web proxy

	
wireless-tool
 s
 – not on a server

	
xinetd, telnet, rsh, rlogin, ypbin
 d
 – defunct network protocols, never use

aide

After configuration of a new system, you should install aid
 e
 , the Advanced Intrusion Detection Environment. aid
 e
 detects file tampering by scanning all files and folders while in a known good state, producing a baseline from that scan, and comparing that baseline to the current state.

The configuration file is /etc/aide.con
 f
 . aid
 e
 uses multiple means to compare files. Folders and files which are expected to be changed in the normal course of business should be excluded using one of these directives:

! /dirnam
 e
 prevents scanning of the directory entirely, or

/dirname CONTENT_E
 X
 , excludes content, but monitors permissions, SELinux context, etc.

This should be done if you encounter too many false positives using the defaults. Remotely mounted filesystems should be excluded, instead they should be scanned by the hosting device. After configuration changes, the integrity of the configuration file should be checked with

aide -
 D
 .

Before using aide, you must create an initial database with aide -
 i
 . This scans the entire computer and produces a database /var/lib/aide/aide.db.new.g
 z
 . A copy of this database should be retained as a baseline, in case a forensic investigation occurs. If possible it should be stored on read-only media, off-line and off-site. To use this database as your baseline copy it to /var/lib/aide/aide.db.g
 z
 , the name of the working database.

To check against the working database, aide -
 C
 . The output is stored in /var/log/aide/aide.lo
 g
 . Examine this for unexpected changes, which should be investigated.

Checking integrity does not update the database, this must be done manually. Update and archive the database after documented changes (software installation or patches) using

#
 aide -
 u
 .

Best practice says that aid
 e
 should be run at least weekly and the results archived. A wrapper script that copies the results to a centralized server would be appropriate.

When setting up checks for multiple machines, it is advisable to offset the start times. This is particularly important in a virtualized environment, as aid
 e
 does a full scan of the system each time it is run, and can place a very large load on shared storage.

Prelinking
 is a deprecated feature designed to speed performance by altering the linkage sets within executable binaries. It was found to yield minimal benefit, and under certain circumstances causes system corruption, including full bricking. Beginning with EL7 prelin
 k
 is not installed by default. But it may be installed on EL6, or if a system administrator followed an out-of-date performance tuning document.

Because prelinking changes files it will cause false positives when using aid
 e
 and rpm -
 V
 . This effectively renders any system integrity checks useless.

If prelin
 k
 has been installed, disable it by creating a file /etc/sysconfig/prelin
 k
 , with the line PRELINKING=n
 o
 . You can then undo the changes it made to binaries by running /usr/sbin/prelink -u
 a
 . When this has completed, yum remove prelin
 k

 .

oscap, scap-workbench

OpenSCAP (
 osca
 p
) is an open source security content automation protocol toolkit approved by DISA and NIST as an 'Authenticated Configuration and Vulnerability Scanner'. It also can perform remediation based on its findings. This works quite well: on a default installation of EL7 with "STIG compliant server with GUI" selected as the installed security profile, the number of findings went from 106 down to 19 in minutes. Installing scap-workbenc
 h
 will install all required packages. Alternatively you can group install "Security Tools"
 if group_package_types=mandatory,default,optiona
 l
 is set in yum.con
 f
 , or select them during initial server build.

Ideally osca
 p
 should be run from a GUI as the command line is complex and poorly documented. A "simple" command line to scan and remediate EL7 as run from /usr/share/xml/scap/ssg/conten
 t
 looks like this:

oscap xccdf eval --remediate --profile /stig-rhel7-server-upstream \

--cpe /ssg-rhel7-cpe-dictionary.xml /ssg-centos7-xccdf.xml

The command line can get as interesting as:

oscap xccdf eval --datastream-id \

 scap_org.open-scap_datastream_from_xccdf_ssg-rhel7-xccdf-1.2.xml \

--xccdf-id scap_org.open-scap_cref_ssg-rhel7-xccdf-1.2.xml \

--profile xccdf_org.ssgproject.content_profile_C2S \

--oval-results --results /tmp/tmp.74oUO0gtVd/results-xccdf.xml \

--results-arf /tmp/tmp.74oUO0gtVd/results-arf.xml \

--report /tmp/tmp.74oUO0gtVd/report.html \

--progress /usr/share/xml/scap/ssg/content/ssg-centos7-ds.xml

That block of text was generated by scap-workbenc
 h
 , the graphical tool. It can be invoked off the action menu or by running it from a graphical terminal (as root). While not as powerful and versatile as running osca
 p
 directly from the command line, scap-workbenc
 h
 is very straightforward. Some features of scap-workbenc
 h
 :

	Local or remote scanning and remediation (via ssh)

	
Multiple profiles to meet industry and government standards including:

	United States Government Configuration Baseline (NIAP OSPP v4.0, USGCB, STIG)

	U.S. Government Commercial Cloud Services (C2S)

	CNSSI 1253 Control Baseline

	Criminal Justice Information Services (CJIS) Security Policy

	Payment Card Industry – Data Security Standard (PCI-DSS) v3

	DISA STIG

	Ability to customize profiles

	Export of custom profiles to rpm format, allowing remediation of isolated systems

The STIG SCAP content for Red Hat 7/8 has been approved by NIST. It is available at https://nvd.nist.gov/ncp/repositor
 y
 . Pre-release (working) content is available at

https://github.com/ComplianceAsCode
 /
 . Local content is installed and will be be updated with the scap-security-guid
 e
 package.

This content should be treated as 'trust, but verify' as simply using it does not constitute a full validation. Much more information is available at https://www.open-scap.or
 g
 , which also has one of the most readable versions of the STIG at https://static.openscap.or
 g
 .

There is no STIG content for CentOS as CentOS is not commercially supported and therefore by definition can not be STIG compliant. It was decided to no longer provide content as it might be construed as a STIG certification of CentOS. The content for Red Hat can be converted by renaming the .xm
 l
 files and substituting the proper strings using se
 d
 , but that is an exercise beyond the scope of this book.

ansible

Ansible is a centralized configuration and automation platform capable of controlling not just EL family Linux hosts, but everything from routers and switches, to Azure and AWS cloud services. Full documentation is at http://docs.ansible.co
 m
 , the source for ansible is available at https://github.com/ansibl
 e
 . Ansible is now a subsidiary of Red Hat.

A simple ansible command looks like this:

ansible -m shell -a 'free' al
 l
 .

In the above example al
 l
 is a target host list is defined in /etc/ansible/host
 s
 , grouped below a header contained in [brackets
]
 . You will need key-based ssh to each host listed. Use -
 u
 to run as an alternate user.

Where -
 m
 loads the module shel
 l
 , -
 a
 passes the argument 'free
 '
 to shel
 l
 , and al
 l
 is the target host list. This will run the command fre
 e
 , via the shel
 l
 on al
 l
 listed target hosts. This command could also have been run as

ansible all -a 'free
 '
 .

The modules control a certain action or type of command. A full list of modules can be obtained with #
 ansible-doc -
 l
 . For documentation on the shell module: # ansible-doc shel
 l
 . Another useful module is servic
 e
 , the following line restarts httpd on al
 l
 :

ansible all -m service -a "name=httpd state=restarted
 "
 .

While you can call commands directly, the strength of ansibl
 e
 comes from its ability to run playbook
 s
 , which call tasks and can produce fully automated workflows. The Ansible-Lockdown group has produced a STIG compliance playbook, which will perform much of the STIG-requisite configuration for you. It is primarily this task that we will focus on.

To obtain the STIG playbook for EL7, in an empty directory (such as /gitpath
 /
):

#
 git clone --recursive https://github.com/ansible/ansible-lockdown.git

To run the STIG playbook, create a host list and run:

#
 ansible-playbook -l
 hosts
 /
 gitpath
 /ansible-lockdown/stig.ym
 l
 .

Ansible also has a GUI-based control station called Ansible Tower. A free limited-feature version can be run for up to 10 hosts. Red Hat has open sourced a version of Tower, called aw
 x
 , which does not have these limitations. Releases of aw
 x
 will be developmental, much as Fedora is related to RHEL. It is anticipated that there will eventually be a stable release version, following the CentOS model. Installation is lengthy, involved, and varies between distributions and environments. If you are managing a large number of computers it may well be worth the effort. Consult the documentation.

clam

Many people will tell you Linux systems do not need an anti-virus/anti-malware solution. With the ever increasing pace of malware development, this is wrong and dangerous. It is also required by STIG. There are two acceptable alternatives for provision of virus scan capability: McAfee VirusScan and clama
 v
 . clama
 v
 is FOSS and included in the EPEL repo.

	
Install the following:

	
clama
 v
 , clamav-dat
 a
 , clamav-deve
 l
 , clamav-file syste
 m
 ,

clamav-li
 b
 , clamav-scanne
 r
 , clamav-serve
 r
 , clamav-updat
 e

	
If not already done, in /etc/clamd.conf

	Comment out Example

	Uncomment LocalSocket

	
Uncomment or add

	
ExcludePath ^/proc
 /

	
ExcludePath ^/sys
 /

	
ExcludePath ^/sys
 /

	
CrossFilesystems no

	
If not already done, in /etc/freshclam.con
 f

	Comment out Example

	Run #
 freshcla
 m
 to update the AV database.

	Start and enable the clam
 d
 service

You will receive a warning that Bytecode was disabled, this is ok

	
Run the following at appropriate intervals:

	
/bin/freshcla
 m

	
/usr/bin/nice -n 15 /bin/clamscan --quiet \

/ -rol /var/log/clamscan.log

Securing the network stack

There are a number of steps to get networking to STIG. The firewall should be on, enabled and the active zone set to DROP, as noted above. Some time should be spent evaluating networking needs and building rules to restrict unneeded and unwanted traffic. For instance, restricting inbound ssh connections to those originating from your management network, or restricting an internal web server to only respond to internal traffic.

The following line should be added to /etc/sysconfig/network

IPV6_AUTOCONF=no

Then there are the kernel parameters that need to be adjusted. You can change the running state with sysctl -
 w
 , but it is easiest to simply add all the lines to

/etc/sysctl.d/99-sysctl.conf
 and reboot or run # sysctl --syste
 m
 when all modifications are complete. These are the lines to be added

net.ipv6.conf.default.accept_source_route = 0

net.ipv6.conf.all.accept_source_route = 0

net.ipv6.conf.all.accept_redirects = 0

net.ipv6.conf.default.accept_ra = 0

net.ipv6.conf.all.accept_ra = 0

net.ipv6.conf.default.accept_redirects = 0

net.ipv4.conf.default.accept_source_route = 0

net.ipv4.icmp_ignore_bogus_error_responses = 1

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.all.secure_redirects = 0

net.ipv4.conf.all.accept_source_route = 0

net.ipv4.tcp_syncookies = 1

net.ipv4.conf.all.accept_redirects = 0

net.ipv4.conf.all.log_martians = 1

net.ipv4.conf.all.rp_filter = 1

net.ipv4.icmp_echo_ignore_broadcasts = 1

net.ipv4.conf.default.secure_redirects = 0

net.ipv4.conf.default.log_martians = 1

net.ipv4.ip_forward = 0

net.ipv4.conf.all.send_redirects = 0

net.ipv4.conf.default.send_redirects = 0

Unused network protocols should be prevented from loading by creating a file in /etc/modprobe.d
 which contains the following:

install atm /bin/true

install firewire-core /bin/true

install tipc /bin/true

install sctp /bin/true

install can /bin/true

install bluetooth /bin/true

A review of all installed kernel modules should also be done, and any unwanted ones added here.

Command Summary

Module 1: Introduction

	

l
 s
 – list files

	
-
 l
 – long

	
-
 a
 – all

	
-
 d
 – directory

	
-
 Z
 – selinux

	
-
 i
 – inode information

	

c
 d
 – change directory

	

 .
 – this directory

	
.
 .
 – the parent directory

	

 ~
 – the home directory

	
-
 – the previous directory

	
pw
 d
 – print working directory

	

ca
 t
 – print a file

	
-
 n
 – number lines

	
-
 b
 – number non-blank lines

	

w
 c
 – count lines, words, and characters

	
–
 l
 – count lines only

	

les
 s
 – view output one page at a time

	q – quit

	
/
 string
 / ?
 strin
 g
 – search forward, backward for strin
 g
 (
 n
 / N
 repeats)

	
g
 g
 / G
 – top /bottom

	
F
 – follow (
 CTL-
 c
 to stop)

	
alia
 s
 – remap a command (add to ~/.bashr
 c
 to make permanent)

	

redirection
 :

	
a
 |
 b
 – send output from command a
 to command b

	
a
 >
 x
 – overwrite file x
 with output of command a

	
a
 >>
 x
 – append output of a
 to file x

	
a
 | xargs
 b
 – send output from command a
 as arguments to b

	
b
 $(
 a
)
 – expand command a
 as arguments to b

	

command separation:

	
;
 – separate commands on a line

	
a
 &&
 b
 –run b
 if a
 succeeds

	
a
 ||
 b
 – run b
 if a
 fails

	
&
 – run a command in the background

	
\
 – continue command
 on next line

	

streams:

	
0
 – STDIN

	
1
 – STDOUT

	
2
 – STDERR

	
2> /dev/nul
 l
 – suppress errors

	
2>&1> /dev/nul
 l
 – suppress all output

	
CTL shortcuts:

	
CTL-
 a
 / CTL-
 e
 – start / end of line

	
CTL-
 c
 – stop a running command or input

	
CTL-
 d
 – send End Of File (logs out if sent to a bare prompt)

	
CTL-
 L
 – clear the screen

	
CTL-
 r
 – reverse search for commands

	

histor
 y
 – display previous commands

	

!
 ##
 #
 – run command ##
 #
 from history

	
!
 !
 – last command

	
!
 $
 -- last argument

	
$
 ?
 – last exit code

	
exi
 t
 , logou
 t
 , CTL-
 d
 – ways to end a shell

	
--hel
 p
 – standard short help option

	

ma
 n
 – manual pages

	
–k
 strin
 g
 – find man pages about string

	
mand
 b
 – update man page database

	
inf
 o
 – documentation

Module 2: Files and Directories

	
fil
 e
 – determine file type

	
sta
 t
 – display file status (metadata)

	
whic
 h
 – locate first command in $PATH

	
wherei
 s
 – search for a command and related files

	

locat
 e
 – find files based on an index database

	
updated
 b
 – update
 the locate database

	

fin
 d

	
-maxdept
 h
 / -mindept
 h
 – directory depth of search

	
–typ
 e
 – of file

	
-nam
 e
 – literal name

	
-inam
 e
 – case insensitive name

	
-nouse
 r
 – unowned

	
-
 o
 – OR (default is AND)

	
-per
 m
 – permissions (/
 = match any)

	
–exec
 command
 {}\
 ;
 – run command on the results

	

-atim
 e
 , -ctim
 e
 , -mtim
 e
 – access, change, modify time

	
-
 1
 = last 24 hours

	

 1
 = 24-48 hours

	
+
 1
 = more than 48 hours

	

–newe
 r
 – compare time to a file

	
-newermt
 YYYY-MM-D
 D
 – newer modify time

	
-not –newerct
 YYYY-MM-D
 D
 – older change time

	
–l
 s
 / -delet
 e
 – list or delete the results

	

hea
 d
 – display the top of a file

	
-
 n
 – number of lines to display

	

tai
 l
 – display end of a file

	
-
 f
 – follow

	
touc
 h
 – change file timestamps, create empty file

	
ech
 o
 – display something

	

mkdi
 r
 – make directory

	
-
 m
 – mode (permissions)

	
-
 p
 – create path if not extant

	
rmdi
 r
 – remove directory

	

r
 m
 – remove file

	
-
 r
 – recursively

	
-
 f
 – force

	
c
 p
 – copy

	
m
 v
 – move, rename

	
dmes
 g
 – print kernel ring buffer (boot messages)

	
te
 e
 – split output to STDOUT and a file

	
colum
 n
 – put lists into columns

	

sor
 t

	
-
 n
 – numerically

	
-
 r
 – reverse

	
-
 u
 – unique

	
t
 r
 – translate characters

	
uni
 q
 – find unique lines

	
diff
 – compare two files

Module 3: vi

	

Normal
 – command mode; ESC

	
u
 – undo

	
ctrl-r
 – redo

	
y
 y
 – yanks (copy)

	
d
 d
 – delete / cut

	
p
 – paste

	

:
 commands:

	
w
 – write

	
q
 – quit

	
a
 – all

	
!
 – force

	
!
 cm
 d
 – run command

	
e
 – edit from last write

	
n
 / N
 – next / previous file

	
spli
 t
 / vsplit

	
r
 – read

	
r !
 cm
 d
 – read command into file

	
abb
 r
 – abbreviate

	
set numbe
 r
 – turn on line numbering, !
 turns it off

	

Visual
 – select mode; v
 , V
 , CTL-v

	
y
 – copy

	
d
 – delete

	
p
 – paste

	
Insert

 – typing mode; i
 , o
 , A

Module 4: Users and Groups

Module 5: Permissions and Ownership

	
chown
 user:grou
 p
 – change ownership

	

chmo
 d
 – change permissions

	
r
 = 4

	
w
 = 2

	
x
 = 1

	
SUID
 = 4
 (
 s
)

	
SGID
 = 2
 (
 s
)

	
Stick
 y
 = 1
 (
 t
)

	
u
 , g
 , o
 , a
 – user, group, other, all

	
umas
 k
 – permissions to unset on file / directory creation

	
getfac
 l
 – get file ACL

	

setfac
 l
 – set file ACL

	
-
 m
 – modify an ACL

	
-
 x
 – remove an ACL entry

	
-
 b
 – remove all ACLs for file

	
-
 R
 – apply ACL recursively through subdirectories

	

[d]:u|g|o|m:
 UID
 |
 GID
 ::
 perms

	
d
 – default

	
u
 , g
 , o
 – user, group, other

	
m
 – mask

	
U
 I
 D
 ,
 GID

	
perm
 s
 – rwx permissions

Module 6: Regular Expressions

	

character sets

	
[a-z
]
 – any single lowercase alpha character

	
[A-Z
]
 – single uppercase alpha character

	
[abc
]
 – a, b, or c.

	
[0-9
]
 – any single digit

	
[^a2
]
 – any character NOT a
 or a 2

	
 .
 – any single character other than line break

	
 [.]
 – a literal period

	
[a|b
]
 – a
 OR b

	

 ^
 /
 $
 – beginning / end of line

	

modifiers –
 Match the preceding…

	
 ?
 – 0 or 1 times

	
 *
 – 0 or more times

	
 +
 – 1 or more times

	
{N
 }
 – exactly N times

	
{N,
 }
 – N or more times

	
{N,M
 }
 – between N and M times

	

backreferences

	
()
 ​
 Encloses the pattern to store matches from

	
\N
 ​
 Return the match from the Nth (1-9) stored backreference

	

grep

	
-
 v
 – invert the match (return ONLY lines where pattern was NOT matched

	
-
 o
 – match entire line (rather than within the line)

	
-
 b
 – respect word boundaries

	
-
 i
 – case insensitive

	
-
 E
 – extended grep

	
+ ? | {} (
)
 – literals in basic grep, metacharacters in extended (
 -
 E
)

	
--colo
 r
 – highlight the
 matched string

	

se
 d

	
-
 n
 – prevent normal output printing

	
-
 i
 – perform an in-place edit

	
-
 r
 – extended regular expression mode

	
-
 e
 – multiple expressions in a line

	
-
 f
 – run a sed script. sed -f
 script original changed

	

 p
 – print

	

 s
 – substitute

	

 d
 – delete

	

 g
 – global

	
sed 's/
 pattern
 /
 replacement
 /g'
 filenam
 e

	

aw
 k
 '{
 commands
 }'
 filenam
 e
 .

	
Commands

	
prin
 t
 – print matches

	
sub(
)
 – substitute, once per line

	
gsub(
)
 – global substitute

	
-
 F
 – set delimiter

	
-
 f
 – run a script

	
/
 pattern
 /
 ​
 match a pattern (occurs before commands portion)

	
Variables

	
 $0
 – entire current record

	
 $n
 – where n
 is a number; field by sequence e.g. $1,$2

	
 NF
 – number of fields in current record

	
 NR
 – number of current record

	
 FNR
 – if multiple input files, record number of current file

	
 FS/R
 S
 – input field separator/record separator

	
OFS/OR
 S
 – output field separator/record separator

	
FILENAM
 E
 – the name of the input file; undefined in BEGIN block

	

	
Scripting Constructs

	
BEGIN
 ​
 ​
 Run first, used to make header or set variables.

	
BODY
 ​
 ​
 Where the bulk of the script resides.

	
END
 ​
 ​
 Run last, used to create a footer.

Module 7: Booting

	
grub2-mkconfig -o
 /path/
 grub.cf
 g
 – generate the GRUB configuration file

	
grub2-setpasswor
 d
 – set a grub password

	

systemct
 l
 – control systemd

	
statu
 s
 – shows general status and state

	
sho
 w
 – lists all properties

	
list-unit
 s
 – show units in memory

	
start/stop/restar
 t
 – control the running state

	
reloa
 d
 – force the service to re-read configuration files (.conf, not unit files)

	
daemon-reloa
 d
 – re-read unit files and re-run the systemd generator for dependencies

	
enable/disabl
 e
 – turn on/off service auto-start

	
enable --no
 w
 – equivalent to enabl
 e
 and start

	
mask/unmas
 k
 – completely prevent a service from starting

	
is-enable
 d
 – query enable status

	
verif
 y
 – check syntax on unit files

	
ca
 t
 – print assembled unit files for a service

	
isolat
 e
 – change running state to a designated target (
 multi-use
 r
 , graphica
 l
)

	
get-defaul
 t
 / set-defaul
 t
 – control default target

	
hal
 t
 / reboo
 t
 / powerof
 f
 – control power state

	
list-depend
 s
 – show dependencies

	
set-propert
 y
 – change parameters of running units

	

systemd-analyz
 e
 – analyze systemd

	
unit-path
 s
 – show directories read by systemd

	
verif
 y
 – check unit file syntax

	
calenda
 r
 – evaluate time specification

	

runleve
 l
 – view previous and current runlevel

	
N
 – none (booted)

	
1
 / S
 – single-user, rescue.targe
 t

	
3
 – multi-user.
 target

	
5
 – graphical.targe
 t

Module 8: Processes and Services

	

p
 s
 – show running processes

	
-
 e
 – everything

	
-
 f
 – full listing

	
-
 u
 – user

	-o – modify output, takes arguments separated by commas:

%cpu, %mem, args, cgname, cgroup, comm, pid, gid, uid, nice, user

	
-
 Z
 – selinux

	

kil
 l
 – pass a signal

	
-
 9
 – KILL

	
-2
 0
 – SP
 T
 (pause)

	
-1
 8
 – CON
 T
 (resume)

	

pgre
 p
 / pkil
 l
 – process grep / pgrep and signal processes

	
-
 u
 – user

	
-
 l
 – long (shows command line)

	
-
 n
 – newest

	
-
 v
 – invert
 selection

	

killal
 l
 – signal multiple processes

	
-
 u
 – user

	
-
 i
 – interactive (prompt)

	
-
 v
 – verbose, not
 invert

	

CTL-
 z
 – pause a process

	
f
 g
 /
 b
 g
 – resume foreground / background

	
job
 s
 – show paused or backgrounded processes

	

disow
 n

	
-
 a
 – all

	
-
 h
 – leave in table, do not terminate on exit

	

to
 p
 – view running processes

	
h
 – Display a help screen

	
i
 – toggle idle processes

	
f
 – Select fields to display

	
F
 – Select sort field

	
M
 – Sort by memory usage.

	
P
 – Sort by CPU usage.

	
V
 – Show parent process relationships

	
u
 – Filter by user.

	
r
 – Renice a process.

	
k
 – Kill a process.

	
q
 – quit top

	
uptim
 e
 – show system status

	
fre
 e
 / vmsta
 t
 – display memory

	

nic
 e
 – set an initial process priority

	
-
 n
 – value (-20 to 19)

	
renic
 e
 – change a running process priority

	
system
 d
 -
 cgl
 s
 – show control groups

	
systemd-cgto
 p
 – show control group resource usage

	
systemd-delt
 a
 – show changes to systemd configuration files

	
systemd-ru
 n
 – start a new transient scope, slice, service or timer

	
limit user resources in /etc/security/limits.conf

	
ulimi
 t
 – adjust
 limits on the fly

Module 9: Filesystems

	
xfs_d
 b
 – examine an xfs filesystem

	

ln
 original lin
 k
 – link file

	
-
 s
 – symbolic

	
lsbl
 k
 – list block devices

	

parte
 d
 – partition table manipulation

	
print free

	

fdis
 k
 – partition table manipulation

	
-
 l
 – list

	
m
 – menu

	
n
 – new

	
p
 – print current

	
w
 – write

	
q
 – quit

	

fallocat
 e
 – allocate space to a file

	
–
 l
 – set length (
 K
 B
 , M
 B
 , G
 B
 …)

	
partprob
 e
 – inform kernel of changes

	

mkfs.
 *
 – make filesystem

	
-
 L
 – label

	

mount /
 device
 /
 di
 r

	
-
 a
 – mount all automatically

	

-
 o
 – options

	
default
 s
 – alias for async,auto,dev,exec,nouser,rw,sui
 d

	
asyn
 c
 – allow the asynchronous input/output operations

	
aut
 o
 – mount automatically using mount -
 a

	
noaut
 o
 – no automatic mount

	
de
 v
 – interpret character or block special devices on the filesystem

	
exe
 c
 – allow the execution of binaries

	
noexe
 c
 – no execution of binaries

	
nouse
 r
 – disallow non-root to mount and unmount

	
r
 w
 / r
 o
 – read/write / read-only

	
sui
 d
 – allow set-user/group bits to take effect.

	
remoun
 t
 – remount the filesystem in case it is already mounted.

	
noatim
 e
 – do not update access times

	
umoun
 t
 – unmount

	
blki
 d
 – show block device attributes

	
fsta
 b
 – format:

[device] [directory] [type] [options] [dump(0,1)] [fsck(0,1,2)]

	
mkswa
 p
 – create a swap filesystem

	
fdis
 k
 – interactive partition table maniputlation

	

swapo
 n
 /
 swapof
 f
 – control swap devices and files

	
-
 s
 – show swap

	
-
 a
 – all

	
-
 L
 – label

	
-
 v
 – verbose

	

mkswa
 p
 – create swap area

	
-
 L
 – label

	

d
 f
 – show disk usage

	
-
 h
 – human readable

	

systemd-escap
 e
 – translate strings for use in systemd unit names

	
–
 p
 – path formatting

	
pvcreat
 e
 – create a PV

	
pvdispla
 y
 – display detailed information about a PV

	
pvremov
 e
 – remove (destroy) a PV

	
pvresiz
 e
 – resize PV to reflect size of underlying device

	
pv
 s
 – display information about PVs on a system

	
pvsca
 n
 – scan devices for LVM (PV) data; update cache

	
vgcreat
 e
 – create a VG

	
vgdispla
 y
 – display detailed info about VG(s)

	
vgexten
 d
 – add PV(s) to VG

	
vgreduc
 e
 – remove PV(s) from VG (CAUTION!)

	
vgremov
 e
 – destroy a VG

	
vg
 s
 – display information about VGs

	
vgsca
 n
 – scan devices for LVM (VG) data; update cache

	
lvcreat
 e
 – create an LV

	
lvdispla
 y
 – display detailed information about an LV

	
lvexten
 d
 – add physical extents to an LV

	
lvreduc
 e
 – remove physical extents from an LV

	
lvremov
 e
 – destroy an LV

	
lvresiz
 e
 – shrink or grow an LV (-r autoresize resident FS)

	
lv
 s
 – display information about LVs

	
lvsca
 n
 – scan devices for LVM (LV) data; update cache

	

cryptsetu
 p

	
luksForma
 t
 – create a LUKS device

	
luksOpe
 n
 – open LUKS for reading

	
luksClos
 e
 – close LUKS access

	
add mapping and keys in
 /etc/
 crypttab

Module 10: Scheduling Events

	

cro
 n
 – schedule precisely

	
-
 l
 – list

	
-
 e
 – edit

	
-
 u
 – user

	Format:

[minute] [hour] [day] [month] [day of week] [/path/cmd]

	

anacro
 n
 – schedule roughly

	create link from job to /etc/cron.
 interval

	

a
 t
 – schedule events once

	
at
 q
 – list jobs

	
atr
 m
 – remove jobs

	
-
 c
 – show job script

	

batc
 h
 – schedule when cpu usage is below threshold

	set with at –
 l
 or in /etc/sysconfig/atd

Module 11: Networking

	
nmcl
 i
 – command line for Network Manager

	
nmtu
 i
 – text menus for Network Manager

	

i
 p
 – view network information

	
add
 r
 , rout
 e
 , lin
 k
 , neig
 h

	
hostnamectl set-hostnam
 e
 – set hostname

	

firewall-cm
 d
 / firewall-offline-cm
 d
 – configure firewall

	
--permanen
 t
 , --runtime-to-permanent

	
--reloa
 d

	
--list-all

	

--zone=
 zonenam
 e

	
--set-target=DRO
 P

	
--add-service=
 servicenam
 e

	
--add-source=
 address
 /
 mask

	
--add-port=
 ###
 /
 tcp

	
--add-protocol=
 protoname

	
--get-default-zon
 e
 / --set-default-zone

	

s
 s
 – socket status

	
-
 m
 – memory usage

	
-
 o
 – time

	
stat
 e
 – established, syn-sent, syn-recv, connected

	
src/ds
 t
 – source or destination address

	
sport/dpor
 t
 – source / destination port (
 :44
 3
)

	test connectivity: pin
 g
 , arpin
 g
 , tracerout
 e
 , tracepath

	resolve hostnames and IP addresses: di
 g
 , nslooku
 p
 , hos
 t
 , (and EL8 only) resolvect
 l

Module 12: Remote Access

	
ssh
 d
 – configured in /etc/ssh/sshd_config

	

ssh
 user
 @
 host

	-i – identity file (key)

	
ssh-keyge
 n
 – make key

	
ssh-copy-i
 d
 – copy key to remote host

	
scp
 localfile
 user
 @
 host
 :
 /path/fil
 e
 – copy localfile to remote host

	
sft
 p
 – ftp client over ssh

	
cockpi
 t
 – web interface, uses port 9090

	

vsftp
 d
 – configured in vsftpd.conf

	
lftp
 d
 – ftp client

	

http
 d
 – configured in httpd.conf

	
apachect
 l
 – used instead of systemctl to start and stop apache

	
cur
 l
 , wge
 t
 , lynx
 ,
 elink
 s
 – clients for url-based targets

	

nf
 s
 – part of nfs-utils package

	edit /etc/export
 s
 format:

[local share] [hostname or network] [options]

	
options include:

	
r
 w
 –read/write

	
sec
 =
 –security flavors (
 sy
 s
 , krb
 5
 , krb5
 i
 , krb5
 p
)

	
syn
 c
 – do not reply until write

	
fsid=
 0
 – sets the “root” of the virtual filesystem in NFSv4

	
anonui
 d
 – set the system UID to be assigned to anonymous users

	
no_root_squas
 h
 – do not map UID 0 requests to anonymous

	

exportf
 s
 – re-read /etc/exports

	
-
 a
 – all

	
-
 u
 – unexport

	
x2g
 o
 – remote GUI sharing via ssh

	
vn
 c
 – another GUI sharing tool, less secure

Module 13: SELinux

	
getenforc
 e
 / setenforc
 e
 – view/change SELinux status

	

sesearc
 h
 – policy query

	
-
 b
 – boolean

	
--
 rul
 e
 – allo
 w
 , typ
 e
 , neverallo
 w
 , audi
 t
 , dontaudi
 t
 , all

	
-
 s
 – source

	
-
 t
 – target

	
-
 c
 – class (file, dir, socket)

	
-
 p
 – permission type (read, write, create)

	

semanag
 e
 – policycoreutils-python-utils package

	
login

	
user

	
port

	
permissive

	
boolean

	
fcontex
 t
 – file context

	
-
 l
 – list

	
-
 d
 – delete

	
-
 a
 – add

	
-
 e
 – set equal (requires source and target)

	
"/web(/.*)?
 "
 – wildcard a directory

	

ausearc
 h
 – query audit logs

	
-
 c
 – command name

	
-
 i
 – interpret numbers to names

	
-
 m
 – message type

	
-t
 s
 – time start

	
–u
 a
 – match username or User ID

	

restoreco
 n
 – restore SELinux context on a file/directory

	
-
 R
 – recurse

	
-
 v
 – verbose

	

seinf
 o
 – setools-console package

	
-
 a
 – attribute (no space)

	
-
 x
 – print a list

	
sealer
 t
 – setroubleshoot-server package

	

getseboo
 l
 / setseboo
 l
 – view/change selinux boolean

	
-
 P
 – persistent

	

audit2allow

	
-
 o
 – output file

	

semodul
 e
 – manage SELinux policy modules

	
-
 i

 – install

	
-
 d
 – disable

Module 14: Logs

	

rsyslog.con
 f
 severities

	
0
 ​
 emerg

	
1
 ​
 alert

	
2
 ​
 crit

	
3
 ​
 err

	
4
 ​
 warning

	
5
 ​
 notic
 e
 .

	
6
 ​
 info

	
7
 ​
 debug

	

 ​
 .none

	
logrotate.con
 f

	
logger -
 p
 – generate syslog message with priority

	

journalct
 l
 – parse the journal
 d
 logs

	
–
 f
 – follow

	
–u
 unitnam
 e
 – filter by unit

	
–
 r
 – reverse, show newest at the top

	
–
 S
 / -
 U
 – since / until, uses systemd.time specification

	
audit
 d
 – configured with rules added to /etc/audit/rules.d

	
augenrule
 s
 – convert rules in rules.
 d
 to permanent config in audit.rules

	
service audit
 d
 – control audit service: star
 t
 , sto
 p
 , restar
 t
 , state

	

auditct
 l
 – control / view running audit rules

	
–
 l
 – list rules

	
–
 w
 – watch

	
–
 p
 – permissions

	
–
 k
 – key field recorded in the log

	
–
 a
 – audit an event

	
–
 F
 – match a field

	
–
 S
 – systemcall

	
aurepor
 t
 / ausearc
 h
 – parse the audit logs

	

timedatect
 l
 – manage clock time

	
sho
 w
 / statu
 s

	
list-timezones

	
set-timezone

	
set-tim
 e
 “YYYY-MM-DD HH:MM:SS
 ”

	
set-nt
 p
 true

	
crony.con
 f
 – ntp configuration, restart chronyd.service

	

chrony
 c
 – control chronyd

	
source
 s
 / source statu
 s
 / trackin
 g
 – check status

	
clockdif
 f
 – compare time using ICMP

	
hwclock –
 w
 – write software
 clock to hardware

Module 15: Installing Software

	

yum

	
repolis
 t
 – shows repos in /etc/yum.repos.d/

	
repoquery

	
list installed

	
searc
 h

	
inf
 o

	
provide
 s
 – what package provides a binary

	
clean al
 l
 – clear caches

	
makecache

	
install

	
remove

	
update

	
grou
 p
 commands – inf
 o
 , lis
 t
 , instal
 l
 , remov
 e
 , updat
 e

	
--install-roo
 t
 – use a different directory as /

	
createrep
 o
 – build repository metadata

	
subscription-manage
 r
 – used to register Red Hat installations

	

rpm

	
--impor
 t
 – import GPG key

	
-V
 a
 – verify all

	

-
 q
 – query

	
f
 – file (shows parent package)

	
c
 – configuration files

	
l
 – list all installed by package

	
-
 i
 – install

	
-
 U
 – upgrade

Module 16: Kernel Modules and Parameters

	
lsmo
 d
 – list kernel modules

	
modinf
 o
 – provide information about a module

	

modprob
 e
 – add / remove modules from the kernel

	reads files (options and blacklists) from /etc/modprobe.d/

	
-
 l
 – list

	
-
 r
 – remove

	
-
 c
 – show configuration

	

sysct
 l
 – alter kernel parameters

	
-
 a
 – display all

	
-
 w
 – write active parameter

	persistent settings in sysctl.conf

	
--syste
 m
 – read and apply setting
 from configuration files

Module 17: Backups

	

ta
 r
 – archiving

	
-
 c
 – create

	
-
 z
 – zip

	
-
 p
 – preserve permissions

	
-
 t
 – list contents of archive

	
-
 v
 – verbose

	
-
 x
 – extract

	
-
 C
 – change directory

	
-
 d
 – find differences between archive and filesystem

	
-
 f
 – archive filename follows, must be last

	
--xattr
 s
 – preserve both SELinux and acls attributes, use when creating and extracting

	

rsyn
 c
 – remote syncronization

	
-
 a
 – archive, equivalent to -rlptgo
 D
 : r
 ecurse, c
 opy links; save p
 ermissions, t
 imestamps, g
 roup, and o
 wner; also preserve D
 evice and special files.

	
-
 e
 – use specified transport, such as "ssh -i /path/key"

	
-
 X
 – preserve extended attributes

	
-
 A
 – preserve ACLs

	
-
 S
 – squeeze sparse files (those with long zero blocks)

	
-
 L
 – turn links into files

	
--delet
 e
 – remove files not at the source, default is to preserve them at the destination

	
--remove-source-file
 s
 – delete source upon success, useful for temporary tarballs

	
--includ
 e
 / --exclud
 e
 / --filte
 r
 – allows detailed specification of files

	

dd if=
 infile
 of=
 outfil
 e
 – copy data

	
conv=noerro
 r
 – ignore read errors

	
bs
 =
 – block size

	
count
 =
 – number

	
shre
 d
 – securely delete

	
rear mkbacku
 p
 – relax and recover

Module 18: Security

	

aid
 e
 – exclude active files in aide.conf

	
–
 D
 – check configuration

	

-
 i
 – create initial database

	remove .ne
 w
 from the name

	
-
 C
 – compare (outputs to /var/log/aide/aide.lo
 g
)

	
-
 u
 – update the database

	
osca
 p
 – security scanning and compliance tool

	
ansibl
 e
 – remote management and compliance tool

	

gi
 t
 – stupid content tracker

	
clon
 e
 – a repository to a local director

Labs

Lab resources are available at: https://github.com/janustechacademy/EL7

Lab 1: Initial Configuration

	Log into your lab machine.

	Using redirection (>
 , >
 >
 , |
) create a file named IP-inf
 o
 which contains the output of the following commands: ip
 a
 , ip rout
 e
 , ip neig
 h
 .

	From the contents of IP-inf
 o
 create a new file named 192-inf
 o
 . It should only have lines containing the string 19
 2
 .

	Examine the man pages for: c
 p
 , m
 v
 , l
 n
 , and histor
 y
 .

	Create a file called TZ-ma
 n
 which contains a list of all the man pages relating to timezone. Did it work? If not, fix it.

	Clear your history list by deleting all entries.

	Copy IP-inf
 o
 to IP-ol
 d
 ; rename 192-inf
 o
 to 192-ol
 d
 . Do this on one line.

	Insert your history at the bottom of 192-ol
 d
 .

	
Make a directory (
 mkdi
 r
) called 192-zz
 z

	

cat 192-
 *
 – this will return the contents of 192-ol
 d
 , and an error message because cat can't read a directory.

	Create a file err-19
 2
 that contains only the error from this command.

	Run the command again, displaying only the error.

Lab 2: Files and Directories

Finding Things

For the following exercises, unless otherwise specified, you may use any commands you choose to determine the answers. These might be helpful: locat
 e
 , wherei
 s
 , whic
 h
 , and fin
 d
 .

	Find the location of the c
 p
 command.

	Find the location of the man pages for the m
 v
 command.

	
Find all instances of a file called findme.scrip
 t
 .

	How many did you find?

	How many instances of this script are in root’s $PAT
 H
 ?

	Which instance of findme.scrip
 t
 runs when root calls findme.scrip
 t
 without a path?

	Create a file in /lab/02-Files
 /
 called mxyzptl
 k
 . Use locat
 e
 to locate it. Did it work? If not, fix it.

Finding Things with find

In this section, use the fin
 d
 command to answer the questions. Putting 2>/dev/nul
 l
 after a query will suppress errors from the /pro
 c
 file system.

	The /et
 c
 directory contains directories and files that begin with r
 c
 and end with .
 d
 . Find only the directories.

	Find any unowned files on your system.

	Find any files with the SUID bit set which ARE ALSO writable by others.

	Find any files which haven’t been accessed in more than 20 years (they do exist!).

	Use a single line command to locate and optionally
 remove the

/lab/02-Files/killm
 e
 directory and all its contents. Do be careful.

	

 Find any file in /boo
 t
 greater than 20 megabytes in size.

Manipulating Files and Directories

In this section, we will create, manipulate, and destroy files and directories. You may use any commands you like to achieve these goals.

	

 Create a directory in /lab/02-Files
 /
 called ne
 w
 .

	

 Change directories to ne
 w
 .

	

 Create a file named file
 1
 . Put the phrase “this is file 1” inside of it.

	

 Copy file
 1
 and call the copy file
 3
 .

	

 Rename file
 3
 to file
 2
 .

	

 Create an empty file called file3

	

 Create a directory in /lab/02-Files/ne
 w
 called subfiles

	

 Use a single command to copy all files in the /lab/02-Files/ne
 w
 directory into subfile
 s
 .

	

 Move file
 1
 up one level using dot notation.

	

 Without using v
 i
 , read file
 1
 and append its contents to file
 3
 .

Lab 3: vi

vi /lab/03-vi/edit-m
 e
 , follow the directions in the file.

When complete you can check your work:

diff edit-me edit-me.finished | grep "<"

Lab 4: Users and Groups

	
Configure your computer such that users are created with:

	default password expiration of one month from now

	immediate inactivation on password expiration

	password aging fields and logon failure delay meets standards

	Do not
 set minimum password length or quality requirements at this point.

	Enable whee
 l
 in sudoer
 s
 .

	Configure /etc/pam.d/s
 u
 to restrict use of su
 -
 to members of whee
 l
 .

	
Create the following users as specified.

Unless otherwise stated, all should have a primary group of their own.

All users should have a password set.

Usernames should be all lower case
 .

	Adam and Brenda – regular users

	Don and Emma – can use sud
 o
 ,
 members of group de
 v
 .

	Frank – cannot login interactively, with a comment noting that fact.

	Grace – UID
 =
 300
 1
 , member of de
 v
 , helpdes
 k
 , and
 wheel

	Harry – UID = 300
 2
 , member of recruitin
 g
 ,

home directory /lab/05-Permissions/recruiting

	Jane and Mary – members of recruitin
 g
 and restricted-users

	Nick – member of helpdes
 k
 .

	Try to log in as Frank.

	
Change Brenda's shell to v
 i
 . Change to her environment.

	Attempt to read the date into a file – what caused the failure?

	Check your work by viewing the relevant files in /etc
 /
 .

Lab 5: Ownership, Permissions, and Access

Preparation:

 Ensure that grac
 e
 is a member of helpdes
 k
 , but NOT recruitin
 g
 .

 Ensure that harr
 y
 is a member of recruitin
 g
 , but NOT helpdes
 k
 .

Setting Ownership and Basic Permissions

	As root, create the following directories: /lab/05-Permissions/recruitin
 g
 , /lab/05-Permissions/helpdesk

	Assign ownership of recruitin
 g
 to user harr
 y
 and group recruitin
 g
 .

	Assign ownership of helpdes
 k
 to user grac
 e
 and group helpdes
 k
 .

	As harr
 y
 , set the permissions of recruitin
 g
 to 77
 0
 .

	As harr
 y
 , set the access mode of recruitin
 g
 so that new files in that directory will automatically be owned by the recruitin
 g
 group.

	As grac
 e
 , set the permissions of helpdes
 k
 to rwxrwx--
 -
 .

	As grac
 e
 , set the access mode of helpdes
 k
 so that new files in that directory will automatically be owned to the helpdes
 k
 group.

	As grac
 e
 , attempt to access the recruitin
 g
 directory. This should fail.

	As harr
 y
 , attempt to access the helpdes
 k
 directory. This should fail.

Extended ACLs – The order in which you do these tasks matters, as some ACL commands may overwrite previous entries. Review the exercise first, and plan your ACLs before applying them.

	

 Create a file in recruitin
 g
 called rfil
 e
 . It should contain the line, “this is rfile.”

	

 Create a file in helpdes
 k
 called hfil
 e
 . It should contain the line, “this is hfile.”

	

 Set an extended ACL on recruiting that will allow members of the helpdes
 k
 group to list the contents of the directory and read the files inside of it.

	

 Grant full control of any files created in this directory to grac
 e
 .

	

 Others should have no access.

	

 Set an extended ACL on helpdesk that will allow members of the recruitin
 g
 group to list the contents of the directory and read the files inside of it.

	

 Grant full control of any files created in this directory to harr
 y
 .

	

 Others should have no access.

	

 Ensure that these ACLs are applied recursively to the existing files in the directories.

Testing SUID

Lab 6: Regular Expressions

You will find the files for this exercise in /lab/06-rege
 x
 .

	Copy something.com.zon
 e
 to else.com.zon
 e
 .

	Copy something.named.con
 f
 to else.named.con
 f
 .

	Take a moment to read over these two files and familiarize yourself with their contents.

	Display any lines in else.com.zon
 e
 which contain IP addresses.

	Place the result in else.i
 p
 .

	Display any lines in else.com.zon
 e
 which contain hostnames.

	Place the result in else.hos
 t
 .

	Repeat these tasks for the else.named.con
 f
 file.

	Append the results to else.i
 p
 and else.hos
 t
 .

	

 Your network has been renumbered from 192.168.10.0/24 to 10.10.10.0/24.

Use se
 d
 to make the appropriate changes IP addresses in the else.com.zon
 e
 and else.named.con
 f
 files.

	
You have a new domain. Your old domain something.co
 m
 is being replaced with else.co
 m
 .

Use aw
 k
 to make the appropriate changes in both files.

	This includes both hostnames and filename references.

	DO NOT change any references to domains other than something.com.

	Do not alter any portion of a hostname OTHER THAN the something.co
 m
 domain.

Take a moment to review your work. Compare the new files to the originals. Did you miss anything? Did you accidentally change anything you shouldn’t have? If you did, resist the urge to hand correct this with v
 i
 . Try to use se
 d
 or aw
 k
 to fix mistakes.

If you finished early, and need something to do, try this:

	

 Copy /etc/passw
 d
 to /lab/06-regex/passfile

	

 Use se
 d
 to remove all lines in passfil
 e
 that start with a
 and save the file in place.

	

 Use dif
 f
 to compare passfil
 e
 and /etc/passwor
 d
 .

	

 Display passfil
 e
 , sorted alphabetically, saving a copy to alphapas
 s
 in one line.

	

 Display alphapas
 s
 to your screen, but replace all the colons with linebreaks.

	

 Repeat the last step, but eliminate duplicate lines.

	

 Repeat the last step, but only show lines that start with a slash.

Lab 7: Booting

	
Make a copy of /etc/default/grub

	Alter the copy to:

	Have a timeout of 15

	Not hide the menu

	
Have a new boot entry called Other which

	Displays all boot messages

	Has SELinux disabled

	When done have an instructor verify your changes.

	Commit your changes to grub.cfg

Lab 8: Processes and Services

Preparation:

Open at least three connections to your server. You may even want more.

Run to
 p
 in one session…you will want to keep to
 p
 open throughout this lab.

All scripts are in /lab/08-Processe
 s
 ; alter permissions as needed.

Read through the instructions before executing any given step.

Verify who you are before running memm
 y
 . If run as roo
 t
 , it will break your box.

	Pause top; open v
 i
 , and man to
 p
 – in the same window.

	Toggle between them using job
 s
 and f
 g
 .

	Run che
 w
 , this will execute b
 c
 (a calculator) – using quite a bit of cpu. Note its PID.

	Using the signal passing function of to
 p
 , pause and resume the b
 c
 process.

	Background the b
 c
 process from the command line that originated it.

	
disow
 n
 it and log out. Did it continue running?

	Start sprea
 d
 , this will run the b
 c
 backgrounded at varying nicenesses.

	Create a file with the PIDs of the b
 c
 process in it

	
Pause all of them except the nicest.

	If you get really stuck on this there are hints in /lab/08-Process/kille
 r
 .

	

 Resume the 5 least nice.

	

 Clean up all the b
 c
 processes before proceeding.

	

 Start a watc
 h
 for processes named sleep. In a separate window watch for processes belonging to Jane.

	

 Run napp
 y
 as root, Jane, and Mary. This starts multiple sleep
 s
 .

	

 Run sprea
 d
 as Jane.

	

 What is different when Jane runs sprea
 d
 ?

	

 Kill all of Jane's slee
 p
 processes, without affecting any others.

	

 Kill all of Mary's processes.

	

 Clean up the b
 c
 and slee
 p
 processes before proceeding.

	

 Using limits.con
 f
 , give Mary a hard limit of 1 minute cpu. Set hard limits on Nick for nproc = 5000, nice and priority =15.

	

 As Mary, run che
 w
 . Observe what occurs when processor time hits 60 seconds.

	

 As Nick, run sprea
 d
 . Notice the priorities.

	
As Nick run forkbom
 b
 .

	Make sure you don’t do this as root!

	

 Clean up all of Nick and Mary's processes.

	

 Start a vmstat -a -S M
 5
 . This will display memory information in MiB.

	

 Run swapoff -
 a
 , watch the swap file drain. Confirm that swap was disabled using

swapon --summar
 y
 .

	

 In a new window prepare to issue pkill gre
 p
 , do not press enter yet.

	

 As Mary, run memm
 y
 .

	

 Observe the change in memory usage.

	

 As soon as Out of memory errors begin pkill gre
 p
 .

	
Near the end of /var/log/message
 s
 , search for oom-kille
 r
 .

	Read down from there.

	

 Re-enable swap.

	

 Run memm
 y
 again as Mary. Observe the differences.

	

 Create a .slice for Grace, limiting memory usage to .5 G and CPU to 50%.

	

 Run memm
 y
 and chew
 y
 as Grace. Observe the differences.

	

 To ensure that no rogue processes are left over, # reboo
 t
 .

Lab 9: File Systems

Throughout this lab, you will be making extensive changes to disk structures. Please remember to check your work and ensure that the kernel is aware of your changes. If it is not, provoke rescans of your SCSI bus using the methods supplied in the course manual.

Partitioning with fdis
 k
 or parted

	You should have an empty hard drive attached to your system. Identify it.

	On your free disk, create 3 partitions of 1 GB each.

	Ensure that the partition table is updated to reflect your work.

	File System creation and mounting

	Put an xf
 s
 filesystem on your first empty partition.

	Create a mountpoint called /mount
 1
 .

	Mount the filesystem to /mount
 1
 .

	Check it.

	Unmount the filesystem

	

 Configure /etc/fsta
 b
 to automatically mount your new filesystem at boot or by mountpoint. Use default options.

	

 Mount your new filesystem with: # mount /mount
 1
 .

	

 Check your work.

LVM

	

 Create a physical volume from your second partition.

	

 Create a volume group containing only that physical volume.

	

 Create a logical volume that uses 100 percent of the free space in that volume group.

	

 Create an xfs filesystem on that logical volume.

	

 Create a mount point /mount
 2
 and mount the filesystem to it.

	

 Unmount it.

	

 Create a .moun
 t
 unit for this filesystem.

	

 Mount it. Unmount it.

	

 Create an .automoun
 t
 unit for this filesystem and enable it.

	

 Enter the /mount
 2
 directory and check the status of your mount unit.

	

 Pretend the filesystem is full. Use the 3rd free partition to extend the volume group, logical volume, and filesystem.

Hard Links

	Create a file in /lab/07-Filesystems
 /
 named origina
 l
 , with content: “This is the original file.”

	Create a hard link to the file in the same directory. Call the link cop
 y
 .

	Get a list of inodes for all files in /lab/07-Filesystem
 s
 . What are the inode numbers for original and copy? Record the inode of original.

	Read the contents of cop
 y
 . What does it say?

	Add a line to copy that says, “edited from copy.”

	Read the contents of origina
 l
 to the screen. What does it say?

	What is the link count for origina
 l
 ? What is it for cop
 y
 ?

	Delete origina
 l
 .

	What is the link count for cop
 y
 ?

Symbolic Links

	

 Create a symbolic link to cop
 y
 in the same directory. Call the link origina
 l
 .

	

 What are the inodes of the files? What does a long listing tell you about origina
 l
 ?

	

 Move origina
 l
 to /mount1/origina
 l
 .

	

 Add a line to origina
 l
 that reads, “edited from symbolic original”.

	

 Read cop
 y
 . What does it say?

	

 What is the link count for cop
 y
 ?

	

 Delete cop
 y
 . Attempt to read /mount1/origina
 l
 . What happened?

	

 Create a file in 07-Filesystem
 s
 called cop
 y
 .

	

 Add a line to it that reads, “this is not the same file.”

	

 Attempt to read /mount1/origina
 l
 . What happened?

	

 Delete /mount1/origina
 l
 .

	

 Read cop
 y
 . Did deleting /mount1/origina
 l
 have an effect on /lab/cop
 y
 ?

	

 Make a hard link from /lab/07-Filesystems/cop
 y
 to

/lab/07-Filesystems/origina
 l
 .

	

 Delete /lab/07-Filesystems/cop
 y
 . What are the contents of origina
 l
 ? What is the inode and link count? Does the inode for origina
 l
 match the one recorded earlier in this lab?

Lab 10 : Scheduling Events

All tasks for this lab are in /lab/09-Events

Lab 11: Networking

Configure and test static networking

	Confirm that the NetworkManager service is uninstalled.

	Configure your hostnames and IP addresses to match your student sheet.

	Ping the another student's machines by FQDN and by single name.

Use network tools

	Find the name server (NS) and mail exchanger (MX) names and addresses for redhat.com, and doe.gov.

	
Using s
 s
 , start a watc
 h
 on all tcp ports.

	ssh to localhost, then ping yourself. Notice the difference in results.

	Run s
 s
 by itself (without watc
 h
), modifying the results to exclude listening ports and connections from ::
 1
 , and include process information.

Configure the firewall

	Create an at job to disable the firewall 20 minutes from now. If you haven't locked yourself out, remove and renew the job every now and then. If you do lock yourself out, it will let you back in when it runs.

Note: the most common method of locking yourself out is by creating a default DROP with no other rules configured.

	Configure your default zone to have a policy of DROP.

	Allow http
 s
 on TCP port 443 inbound from anywhere, for NEW, ESTABLISHED, and RELATED connections.

	

 Block htt
 p
 on TCP port 80 inbound from anywhere.

	

 Restrict ss
 h
 access to an appropriate network.

	

 Test these rules using nma
 p
 from your other machine.

Lab 12: Remote Access

	Secure ssh
 d
 , provide a login banner.

	Work with one of your neighbors to ss
 h
 without password as Grace and as root from one machine to the other.

	Use sc
 p
 to copy the a file you generated earlier to /labs/16-Remote on your neighbors machine.

	Restrict Adam to sft
 p
 only.

	Create a chrooted sftp home directory for him.

	Move a copy of your local /etc/host
 s
 to Adam's home directory on your neighbor's machine.

	Create a file showing all nonroot logins which have occurred on your computer called nonroot.tx
 t
 . Make it available via htt
 p
 .

	Get a copy of your classmate’s nonroot.tx
 t
 , without using a graphical browser.

Lab 13: SELinu
 x

We’ll be working with Apache and SELinux in this lab. The httpd daemon should already be installed, and the configuration files on your machines should already be altered to allow the labs to function as written. You should only need to make changes of an SELinux nature to accomplish the stated goals.

	Ensure http
 d
 is not running, and that the firewall is off.

	Change to the /etc/httpd/con
 f
 directory and copy httpd.bac
 k
 to httpd.con
 f
 .

	Create a directory, /we
 b
 with permissions of 755

	In /we
 b
 create index.htm
 l
 , with permissions of 74
 4
 and content “Successfully viewed the file in /web.”

	Start http
 d
 .

	Attempt to access this address: http://
 server-name
 /

	What happened? Did you get the results you were expecting?

	Place SELinux into Permissive Mode. Try again. Did the issue resolve?

	Examine log files related to this issue.

	

 Correct the issue

	

 Turn your firewall back on, shut down http
 d
 , and check that SELinux is enforcing.

There are no labs for Modules 14 & 15.

Lab 16: Kernel Modules and Parameters

	In your terminal, display a list of currently loaded kernel modules.

	Locate bnx2f
 c
 .

	Display more detailed information about bnx2f
 c
 . What does the description tell you about it? Does it have any associated parameters?

	What is the default value of bnx2f
 c
 ’s debug_logging parameter? Is that the currently loaded value? Verify this.

	Attempt to alter the debug_loggin
 g
 parameter of bnx2f
 c
 to 0x0
 1
 without unloading the module first. Did this succeed? Why or why not?

	Are there any other modules that depend on bnx2f
 c
 ?

Loading and Unloading Kernel Modules

	Unload bnx2f
 c
 . Did any other modules unload with it? Why or why not?

	Attempt to load bnx2f
 c
 with the debug_loggin
 g
 set to 0x0
 1
 . Did this succeed?

	Unload the module again.

	

 Configure bnx2f
 c
 to load with a debug_loggin
 g
 value of 0x0
 2
 when next loaded.

	

 Load it. Did the changes take? Why or why not?

Blacklisting Modules

	Unload bnx2f
 c
 .

	Blacklist the module. Ensure that this module will not be loaded either manually or automatically.

	Test it.

Lab 17: Backups

	Create compressed archives of /la
 b
 called lab.ta
 r
 and /et
 c
 called etc.ta
 r
 , preserving all attributes

	Restore the lab.ta
 r
 to a new directory /new-labs/

	Create an archive of all files changed in /et
 c
 and /la
 b
 in the last two days. Place it in /lab/18-disaster
 /
 .

	Delete /lab/03-vi/editme.finished

	Add a file /lab/03-vi/editme.added

	Compare the lab.ta
 r
 with the current filesystem using ta
 r
 .

	
rsyn
 c
 all .con
 f
 files from /etc
 /
 to /new-labs/saved-conf
 s
 on your neighbor's machine.

	Delete /etc/sane.d
 /
 on your machine.

	Add a comment to /etc/asound.conf

	

 Restore sane.
 d
 without overwriting your changes to asound.conf

Lab 18: Security

	Install and configure aid
 e
 .

	Write a script to be run daily which archives the results of aide on a neighbor's machine.

	
Audit your installed software and services. Write a series of removal recommendations in /lab/19-Security/software-cleanu
 p
 .

	Don't forget to check dependencies, don't remove things that would break functionality.

	Outline further steps you would take to secure this machine.

	Be prepared to justify your results

Lab 20 – Fina
 l

You have just inherited a new computer. It has been severely misconfigured, and may have been compromised.

Your new box is currently only reachable by telnet, and is drawing a DHCP address. Your instructor will provide you its current address, as well as the static addresses and hostname that it should be given.

Current logins are studen
 t
 and roo
 t
 , both with password ujm<KI*(98

The studen
 t
 account can use sud
 o
 , roo
 t
 is currently locked out.

You will have the use of one of the computers you used during the class, access to the Internet, the course materials, and any notes you have made during the course.

You must secure the computer. You will be given a subset of the STIG as the standard for security.

Some features and functionalities must also be added.

All security and functionality should work without intervention after a reboot.

It is recommended that you review all tasks and the Security Standards before beginning.

	Configure your IP addresses, DNS, and hostname.

	
Establish secure communication with your box, and remove telnet.

	Secure ssh appropriately.

	Restrict ssh to your local network.

	Create a login banner saying:

“I've read & consent to terms in IS user agreement.”

	Enable the web management interface.

	
The boot sequence should be protected from unauthorized meddling.

	set the boot password to BootMe

	The kernel command line should ensure that fips is on, auditing begins appropriately, and SELinux is enforcing.

	
The firewall and SELinux must run automatically.

	The firewall should silently drop packets without responding.

	SELinux must be enforcing.

	
Create two partitions of approximately 400 MB each on the second drive.

	One of these partitions should be used as the base directory for web services.

	
This file system should

	be mounted at /new-we
 b

	be labeled web

	be mounted by label rather than device name.

	
Create an index.html with the output of hostnamectl and your ip address information.

	index.html should only be viewable from your subnet.

	
Create these users:

	Kate – member of group staf
 f
 and developers

	Mike – member of group developer
 s
 , account expires at the end of the year

	Nick – member of developer
 s
 and helpdes
 k
 , UID = 4001

	Paul – UID = 4002, shell = vim

	Dave has been terminated. His account should be dealt with.

	
In the second new partition create a shared directory /cod
 e
 for the developers.

	Allow all members of developers, except Nick, read/write access to code.

	Nick should have read access only.

	Users should not be able to delete files owned by another user.

	
Any new files or directories created in code should

	be owned by the creator and by the developer group

	have appropriate permissions

	

 Allow only Kate and Mike the ability to use sudo.

	

 Configure bidirectional key-based login between your class computer to your new box for Kate.

	

 Create a new 200 MB swap file on the second hard drive using a logical volume.

Add it permanently to the current swap space.

	

 Configure aid
 e
 to run every day at 11 PM.

Limit it to no more than one-half of a core of CPU and 250 Megabytes of RAM.

	
Configure yu
 m
 to remove all metadata and caches, and create a new cache weekly.

	If the computer is powered off, the task must run when it is next powered on.

	
The system must be no more than 30 days out of date.

	If a new kernel is available, it should be installed as the default

	Two old kernels must remain available and bootable

	

 Set the timezone and configure nt
 p
 to use an NIST server or another server as directed.

	

 Configure your new machine to send log files to your class machine.

	

 Configure auditing to STIG standards.

	

 Disable ping to your machine.

	

 Configure the kernel parameters appropriate to secure networking.

	

 Verify that only root has user id 0

	

 Disable CTL-ALT-DEL

	

 Configure the machine to default to multi-user, not graphical mode.

	

 Find and remove any unowned files.

	

 Remove the abr
 t
 package.

	

 Create a daily task which will archive all local configuration files to /backu
 p
 on your class machine. It should run as a non-root user, with no interaction.

OEBPS/Image00001.jpg
Administer and Secure

Enterprise Linux

Red Hat, CentOS and Amazon Linux
versions 7 and 8

Timaeus & Overton

JANUS Technical Academy

OEBPS/Image00000.jpg
Administer and Secure

Enterprise Linux

Red Hat, CentOS and Amazon Linux
versions 7 and 8

Timaeus & Overton

JANUS Technical Academy

